
AD-A266 819

Q WLo..-TR-9o3-0

ASTROS ENHANCEMENTS

Volume II - ASTROS PROGRAMMER'S MANUAL

D.J. NEILL
D.L. HERENDEEN
R.L. HOESLY

Universal Analytics, Inc.
3625 Del Amo Blvd. Suite 370
Torrance, CA 90503

March 1993

INTERIM REPORT FOR THE PERIOD 1/15/87-10/30/92

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

_•ELECTE

UL JUL 1993

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7562 93-15100

93 7 1 5 35

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility or any obligation whatsoever. The fact that the Government
may have formulated or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication, or otherwise as in any
manner, as licensing the holder or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publication.

STEPHEN M. PITROF, CapuSAF NELSOM. WOLF, Technicallanager
Project Engineer Design & Analysis Methods Section
Design & Analysis Methods Section Analysis & Optimization Branch

DAVID K. MILLER, Lt Col, USAF
Chief, Analysis & Optimization Branch
Structures Division

"If your address has changed, if you wish to be temoved from our

mailing list, or if the addressee is no longer employed by your organization
please notify WL/FIBRA Bldg 45, 2130 Eighth St Ste 11, Wright-Patterson AFB
OH 45433-7552 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

REPORT DOCUMENTATION PAGE 0MS No.O704-0188

Pule rpotig urenfo tiscoletotn of nnoaton i etmated to avrai I w prrsponse. incuding th tmefo mw nt Bion er chn existing dae sources.
gathmrngq and ma~nitiwne the dl aaneeded. and completing and rev.ew-ogi the collection of information. Send comments reding thistburden estimate or any other aspect of this

1. AGEN4CY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IMAR 1993 IINTERN! 01/15/87--10/30/92
4. TITE AND SUBTITLE 5. FUNDING NUMBERS
ASTROS ENHANCEMENTS CONTR: F33615-87-C-3216
VOLUME 2 - ASTROS PROGRAMMER' S MANUALA PE: 62201F

__ PROJ: 2401
6. AUTHOR(S) TASK: 02
D. J. NEILL. WORK UNIT: 82
D. L. HERENDEEN
R. L. HOESLY____________

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
UNIVERSAL ANALYTICS INC. REPORT NUMBER

3625 DEL AMO BLVD STE 370
TORRANCE CA 90503

9. SPONSOR1NG/MONITORJNG AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING
FLIGHT DYNAMICS DIRECTORATE AGENCY REPORT NUMBER

WRIGHT LABORATORY
AIR FORCE MATERIEL COMM(AND
WRIGHT PATTERSON AFB OH 45433-7562 WL-TR-93-3038

111. SUPPLEMENTARY NOTES

12a. WiSTRIBUTION/IAVAI.ABIIJTY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

13. ABSTRACT (Maximum 200 words)
ASTROS (Automated STRuctural Optimization System) is a computer program for the
multidisciplinary design and analysis of aerospace structures. ASTROS combines
mathematical optimization algorithms with traditional structural analysis
disciplines such as static forces, normal modes, static aeroelasticity, and
dynamic aeroelasticity (flutter), all in a finite element context, to perform
automated preliminary design of an aircraft structure. This report is a complete
user's manual that documents the many features of ASTROS through version 10 of
the software package. It also provides information on system architecture and
other topics of interest. This report is Volume 2 of a set; Volume 1
(WL-TR-93-3025) is the user's manual.

Best Available Copy _ _ _ _

14. SUBJECT TERMS 15. NUMBER OF PAGES
ASTROS, OPTIMIZATION, AEROELASTICITY, FLUTTER, 700
FINITE ELEMENT METHOD, STRUCTURAL DESIGN, 16. PRICE COOE
AEROSPACE STRUCTURES

j17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSSThA-C
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED I UNCLASSIFIED UL
NSN 7540-01-280.5500 Standard Form Z98 (Rqv Z-0)

Fttbrdb AIN4U Mnd 0

FOREWORD

This interim report is submitted in fulfillment of CDRL CLIN 0001, Sequence No. 12. of the
ASTROS Enhancements Contract, F3361"-87-C-3216, dated 29 January 1987. This volume
provides the basic programmer's documentation for the Automated Structural Optimization
System.

This work was performed by Universal Analytics, Inc. and their subcontractor, Northrop
Corp. This manual supercedes the original ASTROS User's Manual documented in AFWAL-TR-
88-3028, Volume IV by D.J. Neill, E.H. Johnson and R.L. Hoesly. The major contributors to this
report were D.L Herendeen, the Program Manager, D.J. Neill, the Associate Program Manager,
and R.L. Hoesly, the chief programmer for the effort. E.H. Johnson, previously of Northrop, was
a major contributor to the original report.

Capt. S. Pitrof is the Air Force Project Engineer and Dr. V.B. Venkayya the initiator of the
effort. This report covers the work performed between 29 January 1987 and 1 October 1992, but
also includes updated information valid for Version 10.0 of ASTROS.

DTIC QUALITY INSPECTED 5

FNTIS RA&I i

DTIC TAB El
Unannolneed 00
Just ifoicat ion - --

By
Distribution/

Availability Codoe
iAvail endjor,Dint Speolal

Contents

1. INTRODUCTION 1

2. ASTROS SOFTWARE DESCRIPTION 5
2. 1. THE ASTROS SYSTEM 6

2.1.1. SYSGEN Comoonents 6
2.1.2. ASTROS Components 8

2.2. MAJOR FUNCTIONAL CODE BLOCKS 9

2.3. CODE COMMON TO ASTROS AND SYSGEN 12

3. SYSTEM INSTALLATION 13
3.1. MACHINE DEPENDENT CODE 14

3.i.I. General Dependent Code 15
3.1.2. Database Dependent Code 34

3.2. THE SYSTEM GENERATION PROGRAM 58

3.2.1. Functional Module Definition 59
3.2.2. Standard Solution Algorithm Definition 63
3.2.3. Bulk Data Template Definition 63
3.2.4. Relational Schema Definition 67
3.2.5. Error Message Text Definition 68

3.3. GENERATION OF THE ASTROS SYSTEM 70

4. EXECUTIVE SYSTEM 71

5. ENGINEERING APPLICATION MODULES 83

6. APPLICATION UTILITY MODULES 241

7. LARGE MATRIX UTILITY MODULES 289

* 8. THE CADDB APPLICATION INTERFACE 307

v

8.1. CADDY3 BASIC DESIGN CONCEPTS 311

8.1.1. Physical S•ucture 312
8.1.2. Im-provements Over Other Databases 312
8.1.3. ,emory Requirements 313

8.2. THE GENERAL. UTILITIES 314

8.3. THE DYNAMIC MEMORY MANAGER UTILITIES 327

8.4. UTILITIES FOR MATRIX ENTITIES 339

8.4.1. Creating a Matrix .. 339
8.4.2. Packing and Unpacking a Matix by Columns 340
8.4.3. Obtaining Matrix Column Statist' s.................................. 340
8.4.4. Packing and Unpacking a Matrix by Terms 341
8.4.5. Packing and UJnpacking a Matrix by Strings 342
8.4.6. Matrix Positioning ... 343
8.4.7. Missing Matrix Columns ... 344
8.4.8. Repacking a Matrix .. 445

8.5. UTILITIES FOR RELATIONAL ENTITIES 162
8.5.1. Examples of Relationa! Entity Utilities 362
8.5.2. Crating a Relation .. 363
8.5.3. Loading Relational Data ... 363

8.6. Accessing a Relation 365

8.6.1. Updating a Relational entry 366
8.6.2. Other Operations .. 368

8.7. UTILITIES FOR UNSTRUCTURED ENTtTiES 388

8.7.1, Generating an Unstructured Entity 388
8.7.2. Accessing an Unstructured Entity 389
8.7.3. Modifying an Unstructured Entity 390

9. DATABASE ENTITY DESCRIPTIONS 399

0. ,7PPLICATION PROGRAMMER NOTES 673
10.1. SOFTWARE STANDARDS 674

10.2. OPEN CORE CONCEPTS - DMM 676

10.3. CADDB APPLICATION INTERFACE 677

10.4. CODING PRACTICE - THE ASTROS INTERFACE 678

4
vi

Alphabeticai Index of Software Modules

ABOUND 84 DBMDAB 35

ACTCON 86 DBMDAN 36

AEROEFFS 88 DBMDC2... 38

AEIOSENS 91 DBMDCH 37

AM& 94 DBMDCX 38

ANALINIT 97 DBMDDT 40

APPEIND 242 DBMDU 41

AROSNSDR 98 DBMDF. 42

AROSNSMR 101 DBMDHC 43

ASTROS 72 DB'DIIX. ...X 44

BCBGPDT 103 D WM X. ..X 45

BCBULK 104 T3DFMDL 47. BLASTDRV 105 DBNMDLF•......................... 48

BLASFIT... 107 DBMDMM. I 49

BLASTRIM 109 DBMDOF 50

BOUND 110 DBMDOR 51

CDCOMP........................ 290 DBMDRD 52

CEIG 291 DBMv'DSI 54

COLMERGE 293 DBMDTR 55

COLPART 294 DBMDWR 56

DAXB 243 DI.MDZB 57

DBCINI. 77 DBNEMP 322

DBCLOS316 DBOPEN 323

DBCREA 317 DBRENA 325

DBDEST 318 DBSWCH 326

DBCQUV 319 DBTERM 82

DBEXIS 320 DCEVAA.L 112

DBFLSH.. 321 DDLOAD 113

S DBINIT 77 DECOMP 295

vii

DESIGN 115 INER " A 164 6
DESPUNCH 116 INVERC 247

DMA 117 INVERD 248

DOUBLE 16 INVERS 249

DYNLOAD 119 ITERINI. 165

DYNRSFP 121 LAMINCON 166

EDR 123 LAMINSNS 167

EMAl 126 LODGEN 169

EMA2 128 NMA DFU 171

EMG 130 MAKPFV 173

FBS 296 MAKDVU 175

FCEVAL 133 MAKEST 176

FLUTDMA 134 MAPOL 79

FLUTDRV 136 MERGE 298

FLUTQHHL.. 137 MK2GG 179

FLUTSENS 139 MKAMAT 180

FLU1T.RAN 142 MKUSET 182

FREDUCE 144 MMBASC 330

FREQSENS 146 MMBASE 331

FSD 148 M iMDU 432

GDR 150 MMFREE 333

GDR2 152 MMFREG 334

GDR3 153 iM GETB 335

GDR4 155 MMINTF 76

GFBS 297 IMMREDU 336

GL1NiATC 244 MMSQUZ 337

GM.ATD 245 MMSTAT 338

GMMATS 246 MPYAD 299

GPWG.G 157 MSGDMP 250

GREDUCE 158 IM ADD 300

GTLOAD 160 MXFOR .M 346

IFP 162 MXIN 347

viii

0 MXNPOS 348 PREPAS 2............. 74

MXI AK 349 PS 257

MXPKT 350 QHHLGEN 207

MXPKTF 351 RBCH X 209

WPKTI 332 RDDMAT 258

MX1KTM 353 RDDMAT 259

MXPOS 354 RDSMAT 260

MXRPOS 355 REAB 367

MXSTAT 356 REA MBM 368

MXUNP 357 READD 369

MXUPT 358 READDM 370

iN4XJPTF 359 RECLRC 371

MXUP 360 RECOND 372

MXUPTM... 361 RECOVA 211

NREDUCE 184 RECPOS 373

, OFPAEROM 186 REENTDC 374

OFPALOAD 188 REGB 375

OFFDISP 191 REGBM 376

OFFDLOAD 194 REGET 377

OFFE• .R 196 REGETM 378

OFPGRAD 198 REIG 302

OFFLOAD 199 RENT ..Lx 379

OFP.. ROOT 201 REPOS 380

OFPSPCF 202 REPROJ 381

PARTN 301 REQURY 382

PFBULK 205 1,ESCH ..M 383

POLCOD 251 RESETC 384

POLCOS 2F2 RESORT 385

POLEVD 253 REUPD 386

FOLEVS 254 REUPDM 387

POLSLD 255 1 ROIW ERGE 303

POLSLS 256 ROWPART 304

ix

SAERO 213 UTRPRT 274

SAERODRV 217 UTRGRT 275

SAEROMRG 219 UTSFLG, UTSFLR, UTGFLG, UTGFLR 276

SAXB 261 UTSORT 277

SCEVAL 221 UTSRCH 278

SDCOMP 305 UTSRT3 279

SOLUTION 223 UTSRTD 280

SPLINES 225 UTSRTI 281

SPLINEU 227 UTSRTR 282

STEADY 229 UTSTOD, UTDTOS 283

STEADYNP 231 UTUPRT 284

TCEVAL 233 UTZERD 285

TRNSPOSE 306 UTZERS 286

UNGET 391 VANGO 237

UNGETP 392 XISTOI 287

UNPOS 393 XISTOR 288

UNPUT 394 XQENDS 81

UNPUTP 395 XQINIT 73

UNRPOS 396 XQTMON 80

I.NSTAT 397 XXBCLR 17

UNSTEADY 235 XXBD 18

USETPRT 262 X)BSET 19

UTCOPY 263 XXBTST 20

UTCSRT 264 XXBTST 20

UTEaIT 265 XXCLOK 21

UTGPRT 266 XXCPU 22

UTMCOR 267 XXDATE 23

UTMIINT 268 XXFLSH.. 24

UIMPRG,UTRPRG,UTUPRG 269 XXINT 25

UTMPRT 270 XXITOS 26

UT.IWRT 271 XXLSFT 27

UTPAGEIUTPAG2 273 XXNOT 28

x

* XXOVFL 29 XRTOS 32
XXRAND 30 XXUJLNS M3

XX SFT 31 YSMERGE 239

xi

Alphabetical Index of Database Entities

AA 400 BHH 418

AAICMAT 400 BLAST 419

ACPT 401 BLGTJA 420

AECOMPS 404 BLSTJA 420

AECOMPU 405 BODY 420

AEFACT 406 BTEM 421

AERO 406 CAERO1 422

AEROGEOM 407 CAERO2 423

AEROS 408 CAERO6 424

AESURF 408 CAROGEOM 425

AF 409 CASE 426

AG 409 CBAR 430

AGA 409 CELAS1 431

AICAT...........................410 CELAS2...........................432

AICS 410 C XE S12 433

AIRFOIL 411 CIHEX2 434

AIRFOC 412 IEX2.. 435

AJJTL 412 CLAMBDA 436

ALJ............................ 412 CLIASB1. 437

A A 413 CMVIASS2 438

ARM.. 413 CONEFFF 438

ASET 413 CONEFFS 439

ASET1.......................... 414 CONENK. 439

ASTAC 414 CONLIK 440

AXSTAH 415 CONM EST 441

BDD........................... 415 CONMI 442

BEA EST 416 CONM2EST........................ 443

BFRC S.......................... 417 CONROD' 444

BGPDT 418 CONST. 44 E
xii

CONVERT 450 DCONTH2 469

CORDMC 450 DCONTIK 40

CORD2C 451 DCONIRM 470

CORDIR.R 451 DCONTW 471

CORD2R. 452 DCONTWM 472

CORDMS 452 DCONTWP 473

CORMD2S 453 DCONVM 474

CQDMEM1 454 DCONVMM 474

CQUAD4 455 DCONVMP 475

CROD 456 DDELDV 475

CSHEAR 456 DELB 45

CSTM 457 DELM 476

CTRIAL3 458 DELTA 476

CTRMEM 459 DESELM 476

D 459 DESIUST 477

O DCENT 460 DESLINK 478

DCONALE 460 DESVARP 479

DCONCLA. 461 DESVARS 480

DCONDSP 461 DFDU 481

DCONEP 462 DFDUF 481

DCONEPM 462 DFDU 481

DCONEPP 463 DKUG 482

DCONFLT 463 DKVI 482

DCONFRQ 464 DK .V 483

DCONFT 464 DLAGS 483

DCONFTM 465 DLOAD 484

DCONFI. 465 DLONLY 484

DCONLAM 466 DMAG 485

DCONLIST 467 DMIG 485

DCONLMN 467 DMU 486

DCONP N. 468 DMUA 486. DCONSCF 468 DMUF 486

x-im

DMUG 487 EIGC 499

DMUL 487 EIGR 500

DMUN 487 ELAS Soo

DMUO 487 ELASEST 501

DMUR 488 ELEMLIST 501

DMVI 4Z8 EUST 502

DPAV 488 EOBAR 503

DPFV 488 EODISC 506

DPGRVI 489 EOELAS 507

DPGV 489 EOHEX1 508

DPLV3 490 EOHEX2 511

DPNV 490 EOHEX3 514

DPOV 490 EOQDMM1 517

DPRV 490 EOQUAD4 519

DPT VI. 490 EOROD 522

DPVJ 491 EOSHEAR 523

DP. 491 EOSUMMRY 525

DRHS 492 EOTRLA3 526

DTSLP 492 EOTRMIEM 529

DUAD 492 EPOINT 531

DUAV 493 FFT 531

DUFV 493 FLFACI. 532

DUG 493 FLUTMODE 532

DULD 494 FLUTREL 533

DULV 494 FLUTTER 534

DURD 494 FORCE 535

DVCT. 495 FORCE. 535

DVSIZE 497 FREQ 536

DWNWSH 497 FREQ1 536

DYNRED 498 FREQ2 537

D1JK. 498 FREQL 537

D2JK 499 FREQLIST 538

xiv

FTF 538 GTKG 552

GASUBO 538 GTKN 553

GDVLIST 539 GUST 553

GENFA 539 IC 553

GEN- 539 ICDATA 554

GENK 539 ICMATRIX 554

GENM 540 ID2 555

GENQL 54-0 IFM 555

GENQ 540 IFR 555

GFE 540 IHEX1EST 556

GFR 540 IHEX2EST 557

GEOMSA 541 IHEX3EST 558

GEOMUA 542 ITERUST 559

GGO 543 JOB 560

GLBDES 543 JSET 561

GLBSIG 544 JSET1. 561

GMKCT 545 KAA 561

GMMCT 546 KAAA 562

GPFDATA 547 KAFF 562

GPFELEM 548 KALL 562

GPWGGRID 548 KALE 562

GRADIENTT 549 KAO 562

GRAV 549 KARL 562

GRID 550 KARR 563

GRIDLIST 550 KIDDF 563

GRIDTEM 551 KDDT 563

GSKF 551 KEE 563

GSTKF 551 KELM 564

GSTKG 551 KEQE 565

GSTKN 55' KFFM 565

GSUBO........... 552 KFS 565

GTKF 552 KGG 565

xv

K HF 566 MATSS 576

KHHT 566 MATTR 577

KLL 566 MATn 577

KLLINV 566 MAT2 578

KLLL 567 MAT8 579

KLLU 567 MAT9 580

KLR 567 MDD 581

KL11 567 MELM 582

IN 568 0F w

KOA 568 MFORM 83

KOO 568 MGG 583

KOOINV 568 MHH.. 584

KOOL 569 M 584

KOOU 569 MIAERO .1...................... 585

KSOO 569 MKAERO2 586

KSS 569 MLL 586

K .Ull 570 MLR 586

Kll 570 M NN 586

K1112 570 MOA 586

K12 571 MODELIST 587

K21 571 MOMENT 587

LAMBDA 572 MOMENT1 588

LAMDAC 573 MOO 588

LDVLIST 573 MPART 588

LHS 574 I PC 589

LKQ 574 MPCADD 5 9

LOAD 574 NM A.PA 590

LOCLVAR 575 M U. 590

LSOO 575 MRRBAR 590

M A 575 OAGRDDSP 591

MAABAR 576 OAGRDLOD 592

MASSEST 576 OCEIGS 593

xvi

OCPARM 593 PG 611

OEIGS 594 PGA. 61i

OGPWG 595 PGMN 612

OGRIDDSP 596 PHIA 612

OGRIDLOD 597 PHIB 612

OLOCALDV 598 PHIE 612

OM IT 599 PI-FF 613

OMIT1 599 PHIG 613

OTL 599 PHIK -HI 613

OPTIMIZE 600 PI .N 613

PA 601 P 0H O 613

PAA 601 PHIOK 614

PAERO1 601 PHIR 614

PAER02 602 PIHEX 615

PAERO6 603 PLBAR 615. PAF 603 PUST 616

PAL 603 PLOAD 616

PAR 604 PLYLIST 617

PARBAR 604 PM kSS 618

PARL 604 P MAIT 618

PBAR 605 PM1NT 619

PC-AS 605 PN 619

PCOMP 606 PNSF 619

PCOMPS 607 PO 619

PCOMP1 608 POARO 620

PCOMP2 609 PQDMEM1 620

PDF 609 PR 620

PDT 610 PROD 621

PELAS 610 PS 621

PP 610 PSHEAR 621

PFGLOAD 610 PSHELL 622

PFOA 611 PTGLOAD 623

xvii

PTRANS 623 SHAPE 639

PTRMEM . 623 SHEAREST . 640

PI 624 SKJ 641

P2 624 SLPMOD 641

QDMMIEST 625 SMAT 641

QEE 626 SMPLOD 642

QHHL 626 SPC 642

QHJL 627 SPCI 643

QJJL 627 SPCADD 643

QKJL 627 SPUNE1 644

Q MC. 628 SPLINE2 645

QRE 628 SPOINT 645

QRR 628 STABCF 646

QUAD4EST 629 SUPORT 648

RANDPS 630 TABDMP1 648

RBAR 631 TABLEDI 649

RBE1 631 TELM 649

RBE2 632 TEMP 650

RBE3 632 TEMPD 650

RHS 633 TF 651

RLOAD1 633 T DATA 652

RLOAD2 634 TFIXED 653

RODEST 635 TIE EIUST 654

RROD 636 TLOAD1 654

21. 636 TLOAD2 655

R22 636 TM N 655

R31 637 TIM 1 656

R32 637 TMP2 656

SAVE 637 TREF 656

SEQGP 638 TRIM 657

SET 638 TRIA3EST 658

SET2 639 TRMEMdEST 660

xviii

TSTEP 662 UGTKN 667

UA 662 UGTKO 67

UBLASTG 663 UKQ 667

UBLASTI 663 U' 667

UDLOLY 663 UN 667,

UF 66 UNIMK.......................... 668

UFREQA 664 UO 668

UFREQE 664 UOO 669

UFREQF 664 URDB 669

UFREQG 664 USET 670

UFREQI 665 UTRANA 670

UFREQN 665 UTRANE 670

UG 665 UTRANF 671

UGA 666 UTRANG 671

UGTKAB 666 UT ANI.. 671

UGTKA 666 UTRANN 671

UGT F 666 VSDAM 672

UGTKG 666 YS 672

xix

1. INTRODUCTION

This Programmer's Manual is one of the manuals documenting the Automated STRuctural Opti-
mization System (ASTROS). The other three are the Theoretical Manual, the User's Manual and the
Applications Manual. The Theoretical and Applications Manual indicate the range of capabilities of the
ASTROS system while the User's Manual provides a complete description of the user interface to the
system. The Programmer's Manual gives the detailed description of ASTROS software. It describes the
system in terms of its software components, documents the procedure for installing ASTROS on different
host machines and provides detailed documentation of the application and utility modules that comprise
the procedure. In addition, the data structures of the database entities are presented in detail. This
manual is intended to provide the system administrator with a guide to the existing software and the
researcher with sufficient information to add application modules or otherwise manipulate the data
generated by the ASTROS system. Using standard ASTROS features does not require a familiarity with
the information contained in this manual except, perhaps, for the entity documentation, which is useful
when additional database entities are to be viewed.

This document, while useful to the advanced engineering user, is directed toward the system
administrator and/or code developer. This is the individual referred to by the term user unless otherwise
indicated. The Programmer's Manual is structured in this way because all the information needed by the
engineeming user is contained as a subset of that needed by the system administrator. As a consequence,
however, the manual is not as simple for the analyst as might be desired. It is anticipated that the
advanced application user will need to sift through the module documentation and entity documentation
to extract the information needed to modify the ASTROS execution path or to insert additional modules
for performing alternative computations, printing additional results, writing data in alternative formats
or other advanced features that may be performed.

As an introduction to the ASTROS system, Section 2 contains a description of the software
structure of ASTROS, both to provide a resource for the system administrator and to be a road map for
the epplication user in identifying specific modules relevant to the task of interest. Section 2 attempts to
introduce the user to the totality of ASTROS source code and their interrelationships so that subsequent
reading will be more readily interpretable: in essence, Section 2 provides a nomenclature section enabling
the reader to identify (with the inevitable exceptions) the major unit (module) or functional library to
which a particular program belongs. This section provides a framework for subsequent sections in the
Programmer's Manual.

01

Section 3 is devotee, to the inAtýJ1'alon of the ASTROS system on alternative host machines. ThA
steps involved in installing the b.sten rit given, followed by detailed documentation of all the machine
and installation dependent cide. Sdufficient d.cadl is given to allow someone familiar With the target host
system to write a set of machine-deptudeG c. ",.X for that machine or site. This documentation is followed
by the description of the System Generation ?.zss (SYSCEN) and its inputs. These inputs, along with
the SYSGEN program, define the system data-isE &hih, in turn, defines system data to the ASTROS
executive. It is these inputs which the rec-arch,- ra-,y wizh to modify to define a new module, define a
new set of inputs or make other advanced m. ficai:>,,e of the system. A brief presentation of the order of
the operations that follow preparation of the machine dep2.ndent library is given to complete an installa-
tion of the system.

Sections 4 through 8 contain the formai doc..unentac.on of the ASTROS modules. Section 4
documents those portions of the code that are considered to i& at the system level. This means that the
user need not be aware of their existence but they are iiiportant in the overall system architecture.
Further, they perform iuany tasks of which the user may waut to Ue aware if any system modifications
are to be made. Sections 6 through 8 document the utilitied that are saso-cated with the ASTROS
application modules, matrix operations and the database. These section. txe the most important from the
view of the advanced researcher/user in that these are the software tools from whi(h additional capabili-
ties can be put together with reasonable rapidity. In each case, the executive tMAPOL) and application
interface i3 fully defined and the algoritlun of the utility is outlined.

Section 9 contains the documentation of the data structures on the CADDE database that are
used by the ASTROS system. The contents and struicture of each database entity are giv en along with an
'ndication of the module that generates the data and which modules use the data. For mnatrix entities, th4
relevant sec.,Son of the Theoretical Manual is also referenced since the entity contents are more clearly-
understt id in, the content Gf the equations that are highlighted there.

Section 10 contains a presentation of notes for the ASTROS application programmer. It is felt
that the ASTROS system has been designed with sufficient flexibility that the additional feaeture& nr
minor enhancements are desired. Section 10, therefore, attempts to address some issues invoived in
,Yriting an ASTROS module. Rules and guidelines are given which will help the programmer avo.id
complications arising from the interface of the new module and application utilities are aleo given.
r artictdar emphasis is placed on the memory management utilities and the database utilities since these
e-quire a more sophisticated interface than the simple application utilities.

A standard documentation format has been adopted for the modules that are described in Section
3 through 8. Figure I illustrates this format and provides a key for identifying the data thiat are given for
each mocuile. While this format is brief, enough information is given for the user to identify the principal
action of the module and the role it plays in the standard ASTROS execu-ton. The utility modules are
dommuented to the extent necessary for an application programmer to use the utility in any new code to
be inserted in the system.

2I

< module type> Module: <nwae>

Entry Point: <FORTRAN symbol for module/utility>

PURPOSE:

<one or two sentence description>

MAPOL Calling Sequence:

<Executive system access method>

Application Calling Sequence

<FORTRAN call followed by input description>

Method:

<Description of the module's action>

Design Requirements:

<indicates what the module expects to have completed in the context of the standard
sequence>

Error Conditions:

<Brief description of some error conditions that are trapped by the module>

Figure 1. Module Documentation Format

3

2. ASTROS SOFTWARE DESCRIPTMON

.ASTROS is a software system made up of two separate executable programs comprising over
1500 independently addressable code segments containing approximately 300,000 lines of FORTRAN.
While this Programmer's manual is devoted primarily to the detaikld documentation to the separate
modules and subroutines of the ASTROS system, an overview of that system is necessary to understand
how the individual pieces fit together. This section introduces the ASTROS system and describes the
software structure of ASTROS in terms of its major code blocks. Both the system generation program,
3-YSGEN, and the main prograwa, ASTROS, are described and their interrelationships are illustiated.
This section provides a resource for the system administrator and a road map for the application pro-
grammer to identify the section documenting modules relevant to the task of interest. This section also
provides a framework to direct the subsequent sections in the Programmer's Manual.

In the context of the Programmer's Manual, the structure of the ASTROS system refers to the
interrelationships among the major code blocLB. Typically, an analysis of the software associated with an
individual code segment will indicate the izature of the task being p!rformA, and provide information on
the mechanisms by which intramodular communication takes place. The larger picture, in which the
intermodular requirements of a particular code segment becomes clear, is more difficult to grasp. It is
that picture which this secdion attempts to provide.

The magnitude of the ASTROS system requires that the code segments be grouped into abstract
collections of code such as utility modules and the database in order to be understood. While necessary,
these abstract collections can also obscure the picture cf the system since a great deal of the detail is
necessarily lost. Nonetheless, since a discussion of each individual code segment is not possible, a set of
code blocks has been defined for the purpose of wri'ting the Programmer's Manual. Naturally, there are
many ways in which the code segments could be grouped to aid the user in understanding the code
segments and their interactions. For the Programmer's Manual, the code is grouped in a hierarchical
manner by function: that is, code segments that perform 2imilar tasks at a similar level (relative to the
executive system) are grouped together. Some segments of the code, of course, do not fit clearly into this
sirt of functional abstraction. Their role is such that they could lie in more than one group or really don't
beleng to any group ihat has been defined. These exceptions complicate the issue but do not destroy the
utfiity of the functionsa breakdown of the code. When a module could be documented with more than one
cc'&6 gioup, this fact is noted in the appropriate manual sections.

5

2.1. THE ASTROS SYSTEM

The highest level of abstraction is illustrated in Figure 2, which presents the two executable
images that comprise the ASTROS system, their inputs, outputs, and interrelationships. Referring to the
figure, each of the illustrated components is briefly described in the following sections.

2.1.1. SYSGEN Components

The SYSGEN program is a stand-alone executable program that is used to define ASTROS
system parameters. The use of an executable program that is directed by a set of inputs was adopted to
provide a simple mechanism to expand the capabilities of the ASTROS procedure. The inputs, outputs,
and use of this very important feature of the ASTROS architecture are fully documented in Section 3.2.
The SYSGEN program consists of five items indicated by the numbered boxes in Figure 2. Each of these
is briefly discussed below:

1. The SYSGEN INPUTS censist of a set of files that define certain system level data that is written
by SYSGEN to the system database, SYSDB.

2. SYSGEN is an executable program that reads the SYSGEN INPUTS and creates a set of
database entities on SYSDB that provide data to the ASTROS executive and high level
engineering modules.

3. The SYSTEM DATABASE, SYSDB, consists of an index file, SYSDBDX, and (typically) a single
data file, SYSDB01. The SYSGEN program creates and loads database entities onto the system
database which defines:

a. The set of modules which can be addressed through the MAPOL language

b. Tho set of relational schemata for all relations declared in the MAPOL sequence

c. The set of input Bulk Data entries

d. The error message texts for most run time error messages

e. The standard MAPOL sequence to direct the execution of the ASTROS

4. XQDRIV is a FORTRAN subroutine written by SYSGEN that must be compiled and linked into
the ASTROS executable during the generation of the ASTROS executable image. It is the
XQDRIV subroutine that forms the FORTRAN link between the MAPOL language and the
application/utility modules.

5. The SYSGEN OUTPUT FILE is a listing generated by SYSGEN that echoes all the data stored
on the system database. As such, it provides a resource for the applicaticu user and the system
administrator documenting the current ASTROS system. Since this file represents what is, by
definition, the ASTROS program, any problems that arise or quest.ons m the documentation
should be checked against the data in this file. If any discrepancies exist, either the documen-
tation is in error or the SYSGEN inputs are in error. In any case, the ASTROS program is directed
by the SYSGEN data.

6

SYSTEM DATABASE

[~ix 3

4I
ASTROS

xQobRV

RUNDBO2

Figure 2. ASTROS System Overview

7

2.1.2. ASTROS Components

As illustrated in Figure 2, the XQDRIV subroutine and SYSDB are also part of the ASTROS
program. The XQDRIV subroutine is needed to generate the executable image and the SYSDB files MUST
be available on a read-only basis by the ASTROS program whenever an ASTROS job is run. The ASTROS
program is comprised of the following:

1. XQDRIV is a FORTRAN subroutine written by SYSGEN that must be compiled and linked into
the ASTROS executable during the generation of the ASTROS executable image. It is the
XQDRIV subroutine that forms the FORTRAN link between the MAPOL language and the
application/utility modules.

2. The SYSTEM DATABASE, SYSDB. contains database entities which define sets of data
establishing the extent of some of the capabil'ties of the ASTROS program. ASTROS requires
these files on a read-only basis for every execution of the system.

3. The ASTROS program i3 the main executable image associated with the ASTROS procedure. It
is comprised of all the executive, database, utility, and engineering application modules that are
needed to perform the automated multidisciplinary optimization tasks.

4. The INPUT STREAM is the uars input file containing the directives to execute the ASTROS
program. The User's Manual is devoted to its documentation.

5. The OUTPUT FILE contains the data written to the user's output file containing those results
of the ASTROS execution that were requested to be printed or that are printed by default.

6. The RUN-TIME .DATABASE consists of one index file and one or more data files (called,
respectively, RUNDBIX, and RUNDB01, 02, etc., in Figure 2) that contain the database
generated at rnn time by ASTROS. Assuming an execution based on the standard MAPOL
sequence, the run-time database will contain some or all of the entities that are documented in
Section 9 of this manual. The application user can direct whether this database is to be saved
or deleted on termination of the execution. The Interactive CADDB Environment (ICE)
(AFWAL-TR-88-3060, August 1988) can be used to view these data, prepa.re reports or port the

data into other applications.

. 2.2. MAJOR FUNCTIONAL CODE BLOCKS

Figure 3 presents a grouping of source code blocks within the ASTROS system. This grouping is
functional in that code related to the performance of one task or a series of tasks at the same level
relative to the executive system are grouped together. According to this breakdown, there are seven major
blocks of code within ASTROS executable programs. The SYSGEN program has no executive system and
is directed by a simple FORTRAN driver called SYSGEN. The ASTROS system, on the other hand, has a
highly developed executive system that comprises this major ASTROS code block. Also shown are the five
groups of routines which are used by the SYSGEN and ASTROS programs.

The naming conventions used within each code block are worthy of some discussion since they are
useful in identifying an unknown routine in a piece of ASTROS software. Whenever possible, a set of
consistent, meaningful mnemonics was adopted to identify groups of code that belong together, either
functionally or logically. Where such conventions have been adopted, they are indicated in the discussion
of the code block. One complication to such conventions is the use of existing source code as a resource for
the ASTROS program. When major code units were used from existing software, the convention was not
typically enforced. As a result, there are exceptions to the nomenclatures adopted in some of the source
code blocks presented in this section.

Each of the source code blocks is now briefly discussed by reference to the name assigned to it in

Figure 3 and its related Programmer's Manual section is indicated.

1. SYSGEN is a very small code block containing the SYSGEN driver (SYSGEN), a set of four
output routines (xxxou-L) to print the SYSGEN output file and five routine (TIxxx) that
compute the timing constants for the large matrix utilities. The SYSGEN program has a single
execution path which is documented in Section 3.2.

2. The ASTROS executive is the code block containing the ASTROS main driver program, ASTROS,
and the ASTROS executive system software. The executive system is embodied in the routines
beginning with the mnemonics xQxxxx. In addition to the pure executive system routines, the
executive initialization routines for the database (DBINIT) and the memory manager (OINIT)
are also located in this code block. Finally, the general initialization routine PREPAS and the
MAPOL compiler software are considered, for the purposes of the Programmer's Manual, to be
part of the executive system. Thase routines are documented in Section 5.

3. The DATABASE code block contains all the software related to the application interface to the
database and memory management systems for the ASTROS procedure. This software is further
subdivided into five groups of code that represent the application interface to the database and
memory manager. These groups are:

a. The General Utilities that comprise the databa6- application interface applicable to all
database entity types. These routines are denoled by the mnemonics DBxxxx and are
documented in Section 8.2.

b. The Memory Management Utilities that comprise the application interface to the ASTROS
dynamic memory manager. These routines are denoted by the mnemonics wbucxx and are
documented in Section 8.3.

9

I

UTILUTIES

SYSGEN GENERAL (UT)

SYSGEN (Main)
BDTOUT
ERROUT
MODOUT
RELOUT
_ _ _ _ _ _ CADDB DATABASE

General (DB)
Memory (mm)
"Matrix (Az)

ASTROS EXECUTIVE Relation (iw)

ASTROS (Main) Unstructured (oN)
DBINIT
MMINIT
PREPAS
NAPOL

DBTERM
Ex v ..

MACHINE DEPENDENT

"GENERAL (xx)
DATABASE (Dmam)

LARGE MATRIX UTIL1TIES APPLICATION MODULES
Partition/Merge

Multiply and Add MAPOL Addressable Modules
Add ...

Transpose ...
Decomposition ...

Forward/Backward ...
SubstitutionI..

Figure 3. ASTROS Code Blocks

10

0 c. The Matrix Utilities that comprise the database application interface applicable to matrix
entities. These routines are denoted by the mnemonics axxxxx and are documented in
Section 8.4.

d. The Relation Utilities that comprise the database application interface applicable to rela-
tional entities. These routines are denoted by the mnemonics RExxxx and are documented
in Section 8.5.

e. The Unstructured Utilities that comprise the database application interface applicable to
unstructured entities. These routines are denoted by the mnemonics UNxxxx and are
documented in Section 8.6.

4. The MACHINE DEPENDENT code block contains all the software in the ASTROS system that
has been designated machine dependent. This software supplies the interface between the host
computer and the ASTROS system. It is further subdivided into two groups of code:

a. The General Utilities, comprising the database machine dependent code used throughout
the ASTROS system. These routines are denoted by the mnemonics xxxw= and are
documented in Section 3.1.1.

b. The Database Utilities, comprising the database machine dependent code used primarily
by the database software. These routines are denoted by the mnemonics DBMKDx and are
documented in Section 3.1.2.

5. The UTILITIES code block contains all the machine independent application utilities developed
for the ASTROS system. This software is a suite of functions that are useful in many places in
the code. They have therefore been formalized to the extent that they may be used by any
ASTROS application routine. The majority of these routines are denoted by the mnemonics
UTxxxx with exceptions corresponding to those in-core utilities that came from COSMIC/NAS-
TRAN. These are documented in Section 6.

6. The LARGE MATRIX UTILITIES code block contains the utilities developed for the ASTROS
system to operate on large matrices stored on the ASTROS database (rather than matrices stored
in memory). This software comprises a suite of matrix operations that have been formalized to
the extent that they may be used by any ASTROS application routine and by the ASTROS
executive system. There is no consistent naming convention for these routines since they have
been derived from their COSMIC/NASTRAN counterparts. The utilities are documented in
Section 7.

7. The APPLICATION MODULES code block is the largest code block within ASTROS. It contains
the engineering and application modules that support the analysis and optimization features of
the ASTROS system. Each of these modules has been designed to be independent of the other
application modules to the maximum extent possible. Typically, consistent naming conventions
have been used for routines within each module. Because of the disparate code resources that
were used in the development of ASTROS, however, no globally consistent naming convention
was adopted. Section 5 documents each of the modules in the application library.

11

2.3. CODE COMMON TO ASTROS AND SYSGEN 0
Since some machines require or can take advantage of an explicit knowledge of which routines

are needed to create an executable image, this section attempts to indic.ute which portions of the source
code blocks (as grouped in Figure 3) are utilized within the SYSGEN program. With the exception of the
SYSGEN code block, all the illustrated code blocks are used by the ASTROS program. The source code
blocks that are needed, in whole, or in part, by SYSGEN are (1) the SYSGEN code, (2) the DATABASE
code, (3) parts of the MACHINE DEPENDENT code, (4) some of the UTILITIES and (5) parts of the
ASTROS EXECUTIVE.

Rather than write and maintain separate code blocks to perform similar functions, SYSGEN
makes use of the suite of general utilities in the UTILITIES CODE BLOCK The machine dependent code
block is also shared between ASTROS and SYSGEN.

One of the tasks of SYSGEN is to compile and store the standard executive sequence (written in
the MAPOL language) rnto the system database. Therefore, the SYSGEN program makes use of the
ASTROS EXECUTIVE code block to supply the MAPOL compiler. In addition, the SYSGEN driver must
perform the executive functions to initialize the memory manager and the database. Therefore, the
NMaNIT and DBINIT routines from the ASTROS EXECUTIVE code block are also used by SYSGEN.

12

3. SYSTEM INSTALLATION

A software system of the magnitude of ASTROS requires a formal installation of the system on
each host computer. For ASTROS, the installation process can be broken into three distinct phases. In
the first phase, the ASTROS/host interface is defined and the proper machine dependent code is written
to create that interface. The second phase involves the generation of the executable image of the SYSGEN
program and its execution. Finally, the ASTROS executable image is generated using the outputs from
the SYSGEN program. The purpose of this section is to document all the machine dependent code in a
generic manner and to indicate which parameters and routines are most likely to be site dependent and
which are truly machine dependent. In the typical case, the system manager at each facility will be given
the machine dependent library for the host system that is to be used. For completeness, however,
sufficient detail is presented to allow someone familiar with the host system to write a new set of
machine dependent code.

Following the formal documentation of the machine dependent interface is a discussion of the
SYSGEN program and its inputs. The SYSGEN program is important in that it provides the advanced
analyst/user with a mechanism to add features to the system. It is also important for system installation
in that part of its output is required before the executable image of the ASTROS procedure. can be
generated. Again, in the typical case the user will be given a proper set of SYSGEN outputs but the
utility of SYSGEN in increasing the capabilities of the system makes its complete documentation very
useful to the majority of ASTROS users. Finally, a brief section is included to present the total ASTROS
installation in a step by step manner to give an overall view of the process.

The information presented in these sections serves as a guide to the installation of ASTROS on
alternative host machines, but the nature of the macbiae dependencies make it impossible to anticipate
all contingencies that may arise. The installation of the ASTROS procedure on a new host computer can

therefore be a complex task despite the relatively small number of machine dependent routines.

0
13

3.1. MACHINE DEPENDENT CODE I
The machine dependent interface has been designed such that approximately 40 routines are

needed to complete the connection between ASTROS and the host system. The development of the
machine dependent interfaces can be done in a straightforward manner on most machines with more
complexity required for sophisticated interfaces or for alternative host architectures. The typical ASTROS
user will not be willing to perform any but the most rudimentary duplication of the standard, supported
installation dependent interface, although anyone familiar with the host computer system could accom-
plish the task. Installation at sites using machines that are much like the ones already supported is fairly
simple, although even the installation of ASTROS on identical host machines can require some modifica-
tion to the machine dependent code since some parameters and code are site dependent as well as
machine dependent.

The machine dependent code is separated into two libraries: the general library, denoted by
names starting with xX, and the database machine dependent library, denoted by names starting with
DB3&D. The general library consists of timing routines, bit manipulation routines, some character string
ma.nipulation routines, a random number generator and a BLOCK DATA subroutine containing a number
of machine and installation dependent parameters. The timing routines and the random number gener-
ator are site dependent in that each facility typically has a library of such routines. The BLOCK DATA
contains such parameters as the open core size, the definition of logical units, output paging parameters
and other site dependent parameters. The remainder of the routines are very simple and typically do not
vary substantially from site to site, although they are different between machines. In some cases, the
=-routines are written in standard FORTRAN and are in the machine dependent library only because

some host systems provide special routines to perform these tasks.

The database machine dependent library (DBaM) is much more complex than the general machine
dependent library. The complication arises because of the flexibility of the machine dependent interface
and because of the nature of the interface. Unlike the xx library, the DBmD library deals with file
structures and I/O to the host system and with memory management. These issues are highly machine
dependent and are further complicated because the translation of machine independent parameters like
file names to the actual host system file name may need to be very flexible depending on the nature of the
local host system. The ASSIGN DATABASE entry in ASTROS allows the user to enter machine dependent
parameters associated with the data base file attachment. A major task in writing the DBXn library is the
definition of these parameters and the rules for their use: in general they are used to enable the user to
modify the default file attributes. For example, block sizes; or their location on a physical device, such as
disk volume. The flexibility inherent in the machine dependent interface can cause difficulties in writing
the DB•D code, however, in that the code developer may find it hard to differentiate those aspects of the
interface that are free to be redefined from those that are required by ASTROS. In the authors' experi-
ence, however, the task has proven to be tractable for all host systcms used thus far by using the existing
routines as a model. The reader should be under no illusion, however, that the task of writing the DB1I
machine dependent library is simple.

The following sections document the xx and DimE machine dependent libraries in a machine
independent manner. Each routine that is essential to the ASTROS interface, its calling sequence and its
design requirements is listed. It is very important to appreciate that the actual machine dependent
interface may require additional routines that are not documented in these sections. The only routines

14

that are shown here are those that are referenced by the machine independent portions of ASTROS. By
definition, it is these routines that constitute the machine dependent interface. It is often desirable and
sometimes necessary for the machine dependent code to call other machine dependent routines. These
internal interfaces are not documented in this report because of their high degree of dependence on
particular host machines and/or site configurations. It is completely up to the discretion of the code
developer to decide whether such routines are desirable and what tasks they should perform. In fact,
there are no requirements of any kind for the machine dependent code except those imposed by the
definition of the interface (calling sequence and design assumptions). It is that very flexibility that makes
the machine dependent code generation difficult.

3.1.1. General Dependent Code

The following sections document each of the general machine dependent routines contained in the
xx library. These routines tend to be highly site dependent as well as machine dependent, but are
relatively straightforward to develop. Their functions are simple and do not deal with the major machine
dependencies like I/O and word sizes.

0
15

Machine Dependent Utility Module: DOUBLE

Lntg j: DOUBLE

Machine dependent logical function to determine the machine precision as one of single or double

precision.

MAPOL Calling Sequence:

None

Application Calling Sequence:

DOUBLE ()

Method:

DOUBLE returns a. TRUE. if the machine precision is double or a . FvALS. if it is single. ASTROS then
produces al matrix entities and assumes that al matrix entities are of the machine precision. Mixing
single and double precision matrices is not supported by ASTROS code. DOUBLE should be used by al/
application modules that use matrix entities.

Design Requirements:

1. All matrix operations must be either single or double, not mixed.

Error Conditions:

None

16

* Machine Dependent Utility Module: XXBCLR

Entry Point: XXECLR
Purpse:

Machine dependent integer function to clear a bit in an array.

MAPOL Cat ling Sequence:

None
AR1•lic~ation CslinýSeiene

XXBCLR (ARRAY, BIT)

Method:

The bit manipulation routines all assume that the BIT identifier can vary from i to any positive integer.
A consistent set of assumptions on the correspondence of BIT to a word/bit combination in ARRAY must
be made for all bit routines.

Design Requirements:

1. For machine independent use, application program units should size ARRAY based on 32 or fewer
bits per word.

Error Conditions:

None

17

Machine Dependent Utility Module: XXBD i

BtPoint: XXBD

A block data subroutine to initialize machine or installation dependent parameters.

MAPOL Calling Sequence:

None

.Aplication Calling

None

Method:

The XXBD block data establis.e, .the values of machine dependent constants. These parameters include
any consf ant that may be needed fbr the machine dependent library as well as the following installation
or machine dependent values relufred by the ASTROS machine independent routines:

(1) 7'ý,e size of the open core commLnon block /nMORY/ in single precision words.

(2) System dependent precision th:rl's for the large matrix utilities and memory management

(3) The parameters identifying the n•me and password of the ASTROS system database. These must
correspond to those used in the SYSGEN program.

(4) The number of bytes and bits in a siagle precision word, the uumber of clharacters that will be stored
in a hollerith word &nd the FORTRAN format statement to read or write one hollerith word.

(5) The set of "large" and "small" number,• for the machine, including a large real number. a small real
number, the square root of a small real number and the largest integer value supported by the host
system.

(6) The installation dependent number of linef; per page and the maximum number of output lines that
will be used by the ASTROS page utility, UtPAs.

(7) The ASTROS and SYSGEN version and i-sleAse identifiers.

(8) The installation dependent set of logical unit numbers identifying the read/write/punch units and
the unit to be used for the include files, iutermediate storage of the executive timing summary and
the queued storage of the error messages.

(9) System dependent null values for relational entity attribute types

Design Requirements:

1. The logical units specified in the XXBD block datm must not conflict with those identified in the
database machine dependent block data DBBD for the database files.

Error Conditions:

none

18

Machine Dependent Utility Module: XXBSET

Entry Point: XXBSET

Purpose:

Machine dependent routine to set a bit in an array.

MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL XXBSHT (ARRAY, BIT)

Method:

The bit manipulation routines all assume that the BIT identifier can vary from I to any positive integer.
A consistent set of assumptions on the correspondence of BIT to a word/bit combination in ARRAY must
be made for all bit routines.

Design Requirements:

1. For machine independent use, application program units should size •AAY based on 32 or fewer
bits per word.

Error Conditions:

None

19

Machine Dependent Utility Module: XXBTST

Entry Point: XXBTST

Machine dependent logical function to test a bit in an array.

MAPOL Calling Sequence:

None

Application Calling Sequence:

XXBTST (ARRAY, BIT)

Method:

The bit manipulation routines all assume that the BIT identifier can vary from 1 to any positive integer.
A consistent set of assumptions on the correspondence of BIT to a word/bit combination in APYAY must
be made for all bit routines.

Design Requirements:

1. For machine indepondent use, application program units should size AFRAY based on 32 or fewer
bits per word.

Error Conditions:

None

20

Machine Dependent Utility Module: XXCLOK

Entry Point: XXCLOK
Purpose:

Machine dependent routine to return the time of day as a character string and as a number of seconds

past midnight.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL XXCLOK (TIME, ISEC

TIME Character string containing the time of day as HH- -: SS (Character, Out-
put)

ISEC Integer number of seconds since midnight. (Integer, Output)

Method:

None

Design Requirements:

None. Error Conditions:

None

21

Machine Dependent Utility Module: XXCPU I
Entry Point: XXCPU

Machine dependent routine to retirn the elapsed CPU time in seconds.

MAPOL Calling Sequence:

None

Application CalaIng Sequence:

CALL XXCPU (CPU)

CPU Number of seconds of CPU time used since the job started. (Real, Output)

Method:

On the first call to xxcpu, the utility must initialize the system CPU timer and return 0.0 elapsed
seconds. On subsequent calls, the elapsed CPU time in seconds is returned.

Design Requirements:

None

Error Conditions:

None 4

22

* Machine Dependent Utility Module: XXDATE

Entry Point: XXDATE

Machine dependent routine to return the date as a character string MM/DD/YY.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL XXDATE (TODAY)

TODAY Character string containing the date as MM/DD/YY. (Character, Output)

Method:

None

Design Requirements:

None

Error Conditions:

None

23

Machine Dependent Utility Module: XXFLSH I
Entry Point: XXFLSH
purpse:

Machine dependent routine to flush any data in the buffer for a given logical unit.

MAPOL Calling Sec.uence:

None

Application Calling Sequence:

CALL XXFLSH (LU)

LU The logical unit number of the file whose buffer is to be flushed. (Integer,
Input)

Method:

The XXFLSH routine will typically be a return. On machines that support the ability to flush the 110
buffer for a file, however, the XXFLSH routine should call that routine to flush the buffer to the file.

Design Requirements:

None

Error Conditions:

None

24

iI 24

* Machine Dependent Utility Module: XXINIT

Entry Point: XXINIT

Purpose:

Machine dependent routine to perform general machine dependent initialization tasks.

MAPOL Calling Sequence:

None

Application Calling .Seuence:

CALL XXINIT

Method:

The XXINIT routine is typically used to enter machine dependent parameters relating to error handling
by the host machine, the initialization of the machine dependent parameters that must be done at run
time on certain machines and performing any other machine or installation dependent actions that may
be useful. The XXINIT routine is called by the ASTROS main driver as the first executable statement
of the ASTROS.

Design Requirements:

None

Error Conditions:

* None

25

Machine Dependent Utility Module: XXITOS 0
Entry Point: XXITOS

Machine dependent routine to return the character representation of an integer.

MAPOL Calling Sequence:

None

Application CalUing Sequence:

CALL XXITOS (N, V)

N Input integer

v Output character string

Method:

This routine may be written in standard FORTRAN 77 using the internal file feature to write the integer
onto the character string. It is often more efficient to crack the integer into its constituent digits. Some
machines have local utilities that may be used.

Design Requirements:

None

Error Conditions:

None

26

* Machine Dependent Utility Module: XXLSFT

Entry Point: XXLSFT

Purpose:

Machine dependent integer function to shift bits to the left in an integer word.

ksanction Arguments:
XXLSFT (INT1, INT2

Method:

The machine independent use of this function requires that INT2 be less than the smallest number of
bits in a word for any target machine (typically 32).

Design Requirements:

None

Error Conditions:

None

27

Machine Dependent Utility Module: XXNOT6

Entry Point: XXNOT

Purpose:

Machine dependent integer function that returns the complement of INT1.

MAPOL Calling Sequence:

None

Application Calling Seguence:
XXNOT (INT1)

Method:

None

Design Requirements:

None

Error Conditions:

None

28

Machine Dependent Utility Module: XXOVFL

Entry Point: XXOVFL

Purpose:

Machine dependent routine to test for floating point overflow or underflow and return a flag denoting
which has occurred.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL XXOVFL (J)

Integer value returned based on the over/underflow condition:
- I floating point overflow exists
- 2 no error condition
- 3 floating point underflow exists

Method:

In the case of this special routine, if the host system does not have an ZxOVL type of routine, it is
necessary to return a J-2 value for all calls to XXOVFL. In this case, the host system will be relied upon
to indicate the occurrence of a floating point error.

Design Requirements:

None

Error Conditions:

None

29

Machine Dependent Utility Module: XXRAND
Ety Point:

Purpose:

Machine dependent function that returns a random single precision number between 0.0 and 1.0.

MAPOL Calling Sequence:

None

Application Calling Sequence:

XXRAND()

Method:

None
Desgn Requirements:

None

Error Conditions:

None

3

30

* Machine Dependent Utility Module: XXRSFT

Entry Point: XXRSFT

Purpose:

Machine dependent integer function to shift bits to the right in an integer word.

MAPOL Calling Sequence:

None

Application Calling Sequence:

XXRSFT (INTI, INT2)

Method:

The machine independent use of this function requires that INT2 be less than the smallest number of
bits in a word for any target machine (typically 32).

Design Requirements:

None

Error Conditions:

None

31

Machine Dependent Utility Module: XXRTOS I
Enptry Point: XXRTOS

Machine dependent routine to return the character representation of a real number.

MAPOL Colling Sequence:

None

Application Calling Sequence:

CALL XXRTOS (REL, STR)

REL Input real number

BTR Output character string

Method:

This routine may be written in standard FORTRAN 77 using the internal file feature to write the real
onto the character string. It is often more efficient to crack the real into its constituent digits. Some
machines have local utilities that may be used.

Design Requirements:

None

Error Conditions:

None

32

* Machine Dependent Utility Module: XXMLNS
Entry Point: XXULNS

Purpose:

Machine dependent routine to return the used length of a character string.

MAPOL Calling Sequence

None

Application Calling Sequence:
CALL XXULNS (STR, ULEN I

STR Character string (Character, Input)

ULEN The position of the last nonblank character (the first character in the
string is character 1). (integer, Output)

Method:

The XXULNS routine may be written in standard FORTRAN 77 using the LEN function to return the
total length and then looking backwards for the first nonblank character. Certain hosts may benefit
from a machine dependent approach when byte operations are expensive.

Design Requirements:

None

Error Conditions:

None

33

3.1.2. Database Dependent Code 0
The following sections document each of the database machine dependent routines contained in

the DMN library. These routines tend to be site independent, but are highly machine dependent. Their
development on a new host system can become quite complex depending on the desired sophistication of
the interface. These routines deal with file structures 1/0 and memory management as well as certain
CPU critical string manipulation functions.

34

* Machine Dependent Utility Module: DBMDAB

Entry Point: DBMDAB

Purpse:

Tb abort the execution of ASTROS due to a databa3e or memory management fatal error.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DENDAB (FLAG)

FLAG An integer input denoting whether the executive termination utility
XQomDS is to be called or not.

o 0, call XQmNDS, otherwise stop

Method:

The DENDAB routine is set up to avoid the recursion that can occur due to the termination actions taken
by the XQMNS termination utility. Since the database and memory managvr are calling for the abort,
the xQ=Ns routine's attempts to close the database fles often cause the DENDAD routine to be called
again. Hence, the flag argument is input to denote that the abort condition is such that any attempts
to close the database will cause recursion.

Design Requirements:

* None

Error Conditions:

None

35

Machine Dependent Utility Module: DBmDA

Entry Point: DBNDAN

Purpse:

Machine dependent integer function that returns the logical AMD of ITi and INT2.

MAPOL Calling Sequence:

None

Application Calling Sequence:

DBMDAN (INT1, INT2

INT1 Input integer

INT2 Input integer

Method:

None

Design Requirements:

None

Error Conditions:

None

36

* Machine Dependent Utility Module: DBMDCH

Entry Point: DBMDCH

Purpose:

To convert a character variable of arbitrary length into an integer array with four hollerith characters
per word.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBXDCH (CVAR, IIAR, LEN)

CVAR An input character variable of arbitrary length

IVAR The output integer array containing the hollerith equivalent of CVAR

LEN An input integer denoting the number of characters to be placed in IVAR.
LEN should always be a multiple of four, this routine pads with blanks as
needed.

Method:

The DBNDCH routine is used extensively by the database routines to convert user supplied character
variables into hollerith integers for subsequent processing. It is critical for performance that this routine. be efficient. For implementation purposes, it must be assumed that the input character string can be of
any length, but the output hollerith variable must always have four characters per word. Any extra
bytes left unused are filled with blanks.

The only way standard FORTRAN provides to convert character data to hollerith data is with an incore
file operation using the FORTRAN read. While this method works on all machines, it is typically very
slow and causes severe performance penalties. This method can be avoided in most cases since compilers
typically pass two arguments for every character variable with the virtual argument containing the
character length. The virtual argument either follows the character argument directly or is passed at
the end of the list of actual arguments. Knowing this, this routine can usually be written using all integer
data thereby producing much faster code.

Design Requirements:

None

Error Conditions:

None

0
37

Machine Dependent Utility Module: DBZ4DCX

Entry Point: DBMDC1

To perform phase 1 of database configuration initialization.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBMDCl (NWORD)

NWORD Number of words required in DEm (Integer, Output)

Method:

Phase 1 of the database configuration normally involves the determination of default values for the
database. The values that can be changed are defined in the /DBCONS/ common block. These values
can be hard coded in this routine, hard coded in the DBBD block data routine or read from a configuration
file.

The only required function of the routine is to return the number of words in the system dependent
portion of the DBNT.

Design Requirements:

None

Error Conditions:

None

Entry Point: DBMDC2

Purpose:

To perform phase 2 of database configuration initialization.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBIMC2 (DBNT)

DBNT Database name table (Integer, Input)

38

O Method:

When phase 2 of the database configuration is performed, the DBNT table has been allocated and partially
initialized. This routine must initialize the system "Iependent portion of the table. The location of this
data can be found as follows.

DBENTSD = Z (DBNT + DBNSD)

Z (DBENTSD +xx) = machine dependent data ...

It is also the responsibility of this routine to make sure that all of the following varia&bles in /DBCOCt/

have legal values.

DBDFIL default number of data files

DBMFIL maximum number of data files

DBDEFD default data file block size

DBDEFI default index file block size

DBMAXE maximum number of ENT entries

DBE•XD maximum number of DBNT entries

DBMAXN maximum number of NST entries

DBALGN required buffer alignment

Design Requirements:

None

Error Conditions:

None

39

Machine Dependent Utility Module: DDMDT

Entry Point: DBKDDT

Purpose:

To return the time and date in hollerith formats.

MAPOL Calling Sequence:

None

Aplication C2q)g Sequence:

CALL DB3"DDT (DATE, TIKE)

DATE Date in form xx/DD/YY (2 integer words, output)

TIME Time in form H : UK: So (2 integer words, output)

Method:

This subroutine should return the current date and time in the appropriate locations. Each value
returned should be stored in two integer words with four hollerith characters per word.

Design Requirements:

None

Error Conditions:

None

-40

* Machine Dependent Utility Module: DBMDER

Entry Point: DBXDER

Purpose:

To handle machine and installation dependent error conditions for the database and memory manager.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBMDER (ERROR)

ERROR A character argument containing an error message identifier.

Method:

The DBKDER routine is intended to be used in two ways. The first, denoted by a blank character string
on input, is to activate any machine dependent error handling. This is the interface to the DNDiR routine
from the machine independent library. For example, the DBNDER routine typically invokes the host
dependent mechanism to obtain a traceback to assist in locating the source of an error. The second
interface, using nonblank character strings on input, is intended for use by the machine dependent
(DBMD) library. In this function, the DBWDER routine typically writes out error messages identifying the
nature of the (machine dependent) error condition. This is useful for error checking the file naming
conventions, host 1/0 limitations, and other host dependent user interfaces to the ASTROS system.

. Design Requirements:

None

Error Conditions:

None

41

Machine Dependent Utility Module: DB)&DFP
Entry Point: DBMDFP

prpose:

An integer function to reorder the bytes in an integer word.

MAPOL Calling Sequence:

None

Application Calling Sequence:

DBNDFP (INUM)

INux An integer word whose bytes are to be reordered

Method:

On certain machines (notably VAX), the bytes in an integer word are stored in an order right to left.When hollerith data are used, this feature complicates the comparison of two hollerith words. Thisroutine is called to reorder the bytes in an integer word to be left to right, independent of the storageformat on the machine. On machines that do not swap bytes, the DBXDFP function value should be set
equal to the INux value.

Design Requirements:

None

Error Conditions:

None

42

*O Machine Dependent Utility Module: DBMDHC

Entry Point: DBMDHC

Purpose:

To convert an integer array with four hollerith characters per word into a character variable of arbitrary
length.

MAPOL Calling Sequence:

None

Application Calling Seguence:

CALL DBMDHC (IVAR, CVAR, LEN)

IVAR The input integer array containing the hollerith characters.

CVAR An output character variable containing the character representation of
the hollerith IVAR.

LEN An input integer denoting the number of characters in IVAR to convert
and place in CVAp. LEN should always be a multiple of four, the routine
truncates or pads with blanks as needed.

Method:

The DBNHC routine is used extensively by the database routines to convert hollerith integer into. character variables for subsequent processing. It is critical for performance that this routine be efficient.
For implementation purposes it must be assumed that the output character string can be of any length
and the input hollerith variable must have four characters per word as generated by DIMWHC.

The only way standard FORTRAN provides to convert hollerith data to character data is with an incore
file operation using the FORTRAN write. While this method works on all machines, it is typically very
slow and causes severe performance penalties. This method can be avoided in most cases since compilers
typically pass two arguments for every character length. The virtual argument either follows the
character argument directly or is passed at the end of the list of actual arguments. Knowing this, this
routine can usually be written using all integer data which produces much faster code.

Design Requirements:

None

Error Conditions:

None

43

Machine Dependent Utility Module: DBmDHX

Entry Point: DBMDHX

Pur22se
To dump a portion of memory in a hexadecimal or octal format.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBEDHX (ARRAY, LEN)

ARRAY Input array containing data to be dumped

LEN Number of single precision words to dump

Method:

If a database error occurs, portions of the in core control tables are dumped to help diagnose the problem.
It is most often desirable to see this data in a combined hex/octal and character format. This routine
usually dumps the desired data in the following form:

OFFE OFFD hex/octal data character data

OFFH - hex/octal offset of the data from /MMORY/

OFFD - decimal offset of the data from /MZMORY/

Design Requirements:

None

Error Conditions:

None

44

* Machine Dependent Utility Module: ImmIX

Entry Point: DBMDII

Purpose:

Phase 1 of database 1/0 initialization.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBMDI1 (NAME, STAT, RW, USRPRM, NFILE, NWORD)

NAM Database name (Character, Input)

STAT Database status (OLD, NEW, TMP, SAVE, or PERM) (Input)

RW Read/write flag (RO, WO, R/W, Input)

USRPRM User parameters (Character, Input)

NFILE Number of data files in database (Integer, Output)

NWORD Number of words required for each file in DBDB (Integer, Output)

Method:

Phase 1 of the I/O initialization is responsible for determining two values: the number of data files in
the database and the number of system dependent words required for each file in the DBDB. The OBINIT
call is provided with an argument called USRPRM. The contents of this character string are completely
machine dependent and can be used to specify any special processing. Examples of these fields are
provided in Section 1 of the User's Manual.

The most difficult function of this routine is to determine the number of data files for a database. The
followutg ways could be used.

1. If the database has a status of NiW or TRMP, the number of data files is either the default of entered
via the UsRPEI

2. If the database has a status of OLD, the number of data files can either be a hard coded value (usually
1) or can be determined by opening files with the appropriate names until an open fails.

For OLD databases this routine should also determine the index and data file block sizes. This can
usually be done by one of the following two methods.

1. inquire as to the physical attributes of the file to determine the block sizes.

2. Do a sequential read of the first block of the index file and extract the index and data file block sizes
that are stored there.

Design Requirements:

None

Error Conditions:

None

45

Entry Point: DBMDI2

Purpse:

Phase 2 of database 110 initialization.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DMDI2 (DBDB)

DBDB Database Descriptor Block (Integer, Input)

Method:

When phase 2 of the database I/O initialization is performed, the DSDB table has been allocated and
partially initialized. This routine must initialize the system dlependent portion of the table. There are
also several words in the machine independent portion of the DBDB that must be initialized for each
index and data file. The following code shows how these words are located.

For the Index file:

I DBDDBO = DBDB + DBDIFB

For the Data files:

I DBDBO = DBDB + DBDDTA + (IFILE-1)*LENDDE

For all files:

DBDBSD = Z(DBDBO+DBDOSD)
Z(DBDB+DBDIBS) = Index file block size in words
Z(DBDB+DBDDBS) = Data file block size in words
Z(DBDB+DBDMDF) = Maximum number of data files
Z(DBDB+DBDONB) = Current number of blocks in the file
Z(DBDB+DBDOMB) = Maximum number of blocks allowed in the file
Z(DBDBSD+XX) = Machine dependent data

This routine will typically do any physical open or assign calls that are required to make all the index
and data files for this database available for processing.

Design Requirements:

None

Error Conditions:

None

46

* Machine Dependent Utility Module: DBMIOLC

Entry Point: DBMDLC
Purpose:

An integer function to provide the memory manager with an address of a character memory location in

particular precisions.

MAPOL Calling Sequence:

None

Application Calling- Sequence:

DBMDLC (BASE, PREC, STAT)

BASE An input character array whose absolute address is desired.

PREC An input integer denoting the desired precision of the address
- 0 byte address
- 1 word address
= 2 double precision word address

STAT An output integer value that is nonzero if any error conditions occurred.

Method:

The routine determines the absolute address of BASE and modifies the offset value to account for the. precision of the desired address. For example, the VAX machine returns the byte address from the system
utility 9LOCF. To obtain the word address for the VAX, the byte address is divided by the number of
bytes per word (four). A check is made to determine if the byte address is an even multiple of four and/or
eight to check the single and double word alignment.

Design Requirements:

1. This routine is identical to DWMDLF except that the BASE array in this routine is character rather
than integer.

Error Conditions:

1. On certain machines, there is a requirement that the memory addresses be aligned on single and/or
double word boundaries. This routine should perform these checks and return the proper STAT value
if the required alignments are not met:

47

Machine Dependent Utility Module: DBRDLF

Entry Point: DBMDLF
Purpose:

An integer function to provide the memory manager with an address of an memory location in particular

precisions.

MAPOL Calling Sequence:

None

Application Calling Sequence:

DBMDLF (BASE, PREC, STAT

BASE An input integer array whose absolute address is desired&

PREc An input integer denoting the desired precision of the address
- 0 byte address

1 1 word address
= 2 double precision word address

STAT An output integer value that is nonzero if any error conditions occurred.

Method:

The routine determines the absolute address of BASE and modifies the offset value to account for the
precision of the desired address. For example, the VAX machine returns the byte address from the system
utility %LOCF. TO obtain the word address for the VAX, the byte address is divided by the number of
bytes per word (f~ur). A check is made to determine if the byte address is an even multiple of four and/or
eight to check the single and double word alignment.

Design Requirements:

1. This routine is identical to DBMDLC except that the BASE array in this routine is integer rather than
character.

Error Conditions:

1. On certain machines, there is a requirement that the memory addresses be aligned on single and/or
double word boundaries. This routine should perform these checks and return the proper STAT value
if the required alignments are not met:

48

* Machine Dependent Utility Module: DBMDMM

Entry Point: DBMDMM

Purpose:

Initielizes machine dependent parameters for the memory manager.

MAPOL Calling Sequence:

None

Application Calling Sequence:

C,?ZL DBMDMM (ICAWA, IWLIC

ICAWA An output integer indicating if characters are word aligned on the host
machine:

S0 if character variables are word aligned
= 1 if character variables are not word aligned

IWLIC An output integer containing the number of characters stored in a single

precision word on the host system.

Method:

None

C Design Requirements:

None

Error Conditions:

None

4
49

Machine Dependent Utility Module: DBMDOF

Entry Point: DBMDOF

RUF•se:

An integer function to return a FORTRAN index such that the location of one array can be accessed via

another array

MAPOL Calng Sequence:

None

ALplication Calling Sequence:

DBNDOF (ARRAY1, VMAY2)

ARRAY1 One FORTRAN array (Input)

ARRAY2 Second FORTRAN array (Input)

Method:

The result, DEMDOF, is a FORTRAN index such that the same memory location is referenced by APAY1
(DBmoF) and ARMY2 (1). In the DBOPEN call, the user provides a 20-word Iwo array. The last 10
words of this block are available for any required user data. These 10 words can be modified anytime
up to the DBCLOS call for the entity. Since the INFO array is not passed on the DBCLOS call, the DBOPEN
call must remember where it is for later access by the DBCWS call. The DBNDOF function allows the
database to remember where the INO block is by saving its location relative to the /HKORY/ common
block at open time. I
The actual implementation of the call usually requires some method for obtaining the actual address
for a subroutine argument.

Design Requirements:

None

Error Conditions:

None

50

* Machine Dependent Utility Module: DBMDOR

Ent=y Point: DBMDOR

Purpowe:

Machine dependent integer function that returns the logical OR of INT1 and INT2.

MAPOL Calling Sequence:

None

Application Calling Sequence:

DBMDOR (INT1, INT2

INT1 Integer (Input)

INT2 Integer (Input)

Method:

None

Design Requirements:

None

Error Conditions:

* None

51

Machine Dependent Utility Module: DBMDRD

Entry Point: DBMDRD

Purpose:

To read a block from the database.

MAPOL Calling Stguence:

None

Application Calling Sequence:

CALL DBMDRD (DBBD, FILE, BLK, BUFYD

DBBD Database Descriptor Block

FILE File Number (for index files, FILE - 0)

BLK Block Number; if FILE < 0 the BLK is IBLK*DBMFIL + FILE

BUFHD The I/O header location

Method:

The function of this routine is to read a block from the database. The first step is to determine the
database file and block number to be read. the following code will perform this.

IF(FILE .LT. 0) THEN
IBLK = BLK/DBMFIL
IFILE = BLK - IBLK*DBMFIL

ELSE
IBLK = BLK
IFILE = FILE

ENDIF

The block should then be read into the 1/0 buffer using the appropriate calls for the target system. The
machine independent DBDB data, referenced from DBDBO, and machine dependent DBDB data, referenced
from DBDBSD can be obtained from the buffer header. The munber of words to transfer, BLKSIZ, is
obtained from the DBDE.

IF(IFILE .EQ. 0) THEN
DBDBO = DBDB + DBDIFB
BLKSIZ = Z(DBDB+DBDIBS)

ELSE
DBDBO = DBDB + DBDDTA + (IFILE-1)*LENDDE
BLKSIZ = Z(DBDB+DBDDBS)

ENDIF
BUFIO = Z(BUFHD+BFIOBF)
DBDBSD Z(DBDBO+DBDOSD)

52

. After the I/O operation, the following two words of the buffer header should be updates:

Z(BUFHD+BFPBLK) = IBLK*DBMFIL + IFILE
Z(BUFHD+BFDBDB) = DBDB

Design Requirements:

None

Error Conditionsi:

None

53

Machine Dependent Utility Module: DBIUDSI

Entr Point: DBMDSI

Purpose:

To return the integer represented by a character string.

MAPOL Calling Sequence:

Yone

Application Calling Sequence:

CALL DBEMDSI (STR, IVALUE7

STR An input character string containing digits and signs representing an in-
teger value.

XVALUH An output integer variable containing the integer value represented by
the input character string

Method:

This routine is typically written in standard FORTRAN, but may be available as a host system utility.

Design Reguirements:

1. A leading + or - sign is permitted as are all the decimal digits. Any other characters are illegal.

Error Conditions:

1. If the character string does not represent an integer, no warnings are given and IvALux is set to
zero.

54

* Machine Dependent Utility Module: DBMTR

Entry Point: DBMDTR

Purpose:

To terminate processing of a database.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBMDTR (DBDB)

DBDB Database Descriptor Block (Integer, Input)

Method:

This routine is called at program termination to do any system dependent termination processing for
each database. It is not required to do anything. Typically it will close all database files.

Design Requirements:

None

Error Conditions:

None

55

Machine Dependent Utility Module: DBMDWR 0
En.,t o~int-: DBMDWR

Purpose:

To write a block to the database.

•APOL Calling Sequence:

None

Opcaton CaOlig SeQuence:

CALL DBMDWR (BUFHD)

BUFHD I/O buffer header location (Integer, Input)

Method:

The function of this routine is to write a block to the database. The processing is similar to DB1ODED and
the same information is available to the routine.

When writing this routine one special case must be considered. Because of the dynamic way in which
database blocks are allocated and used, it can never be assumed that the database blacks are appended
in sequential order. For example block 10 may be written before block 9. If this situation is not allowed
on the target system then this routine should write dummy blocks to fill any gap before writing the
target block. The contents of these dummy blocks is unimportant.

After the I/O operation, the "buffer modified" flag in the buffer header should be set to zero.

Z(BUFHD+BFMOD) = 0

Also, this routine should maintain the word in the machine independent portion of the DBDB which
indicates the number of blocks on the physical file.

[Z (DBDBO+DBDONB) = MAX (IBLK, Z (DBDBO+DBDONB)) 1
Design Requirements:

None

E&-:or Conditions:

N•one

56

* Machine Dependent Utility Module: DBMDZB

Ejt-, Point: DBMDZB

Purpose:

To find the first zero bit in a word

MAPOL Call*in Seiiuence:

None

Application Calling Sequence:

CILL DBDZUM (WORD, BITNO

WORD Word to be searched for a zero bit (Integer, Input)

BITNO Bit number found. It will be a numzber ranging from 1 to 31 if a zero bit
was found. It will be -1 if all 31 bits are on. (Integer, Output)

Method:

The free Block Bit Map (FBmx) uses a bit to represent each block on the particular database file. If the
bit is on, the block is allocated and if the bit is off, the block is unallocated. Each word in the FPE is
used to represent 31 blocks. The bits are numbered as follows:

unused 0 02 031 ... I 32.

"his bit numbering scheme must be maintained regardless of the bit numbering scheme of the target
qaystem.

The DBMDZB routine should return the first zero bit, starting from left to right. If all bits are one, then
a -1 is returned. This function typically uses the FORTRAN BTEST function (if one is provided) with
appropriate calculations to use the proper bit numbering scheme.

Design Requirements:

None

Error Conditions:

None

57

3.2. THE SYSTEM GENERATION PROGRAM

After development of the machine dependent source code for the target host machine, the next
step in the ASTROS system installation is the assembly of the executable image of the ASTROS system
generation program, SYSGEN. The libraries that must be linked to generate this program have been
outlined in Section 2 of this manual while this section discusses the function of the SYSGEN program and
details the structure of its inputs. These inputs not only define the standard ASTROS system but are also
a powerful tool for an advanced user to expand the capabilities of the system. SYSGEN represents one of
the most useful features of the ASTROS system architecture in that it provides for automated modifica-
tion of many of the procedure's capabilities without requiring modification of any existing source code.

The purpose of SYSGEN is to create a system database (SYSDB) defining system parameters
through the interpretation of several input files. Also, a FORTRAN routine is written by SYSGEN that
provides the link between the ASTROS executive system and the application modules that comprise the
run-time library of the procedure. This program unit is then linked with the system during the assembly
of the ASTROS executable image. The resultant procedure makes use of the system dat,.base as a pool of
data that defines the system at run time. These data are:

1. The ontents of the ASTROS run-time library of MAPOL addressabie modules including both
utility and application modules. Usually delivered as NODDEF. DAT or xODDEF . DATA.

2. The ASTROS standard executive sequence composed of MAPOL source code statements. Usually
delivered as MAPOLISEQ. DAT or MAOLSEQ. DATA.

3. The set of bulk data entries interpretable by the system. This set is defined through the
specification of bulk data templates to be interpreted by the ASTROS Input File Processor (IFP).
Usually delivered as TMOLATE .DAT or TM(PLATE. DATA.

4. The set of relational schemata used by the executive system to satisfy the declaration of
relational variables in the MAPOL sequence without forcing the user to explicitly define each
schema at run time. Usually delivered as RELATION. DAT or REL.TION. DATA

5. The sit of error message texts from which the UTMWRT system message writer utility builds er or
messages at run time. Usually delivered as SEP.EMSG. DAT or SERRSQ. DATA.

There is an input file for each of these data which is interpreted by SYSGEN and used to write
data to SYSDB in particular formats. These database entities are then used by the ASTROS executive
system, application moaules and utilities to perform certain functions. Since these program units are
designed to interpret the set of data that are present in the SYSDB entities, they are flexible in that
virtually any changes to the set of data can be accommodated without modification of the software that
uses the data.

The following sections each contain a description of a SYSGEN input file and of the SYSDB
database entities that are filled with the corresponding data. These input files contain the definition of
the system as developed for the ASTROS procedure. The advanced user may, through the appropriate
changes to these inputs, add new n- idules, add new error messages that may be useful as part of the
additional module(s), add new bulk data inputs, add new relational schemata to those that exiEt or add
new attributes to an existing schema. Finally, the standard solution algorithm itself can be modified,

58

. either to iuclude (as a permanent modification) a new feature or to modify an existing capability. The
advanced user is cautioned, however, that the standard sequence represents a very tightly interwoven set
of functions and any changes should be carefully considered for thei- ramifications on the multidiscipli-
nary features of the system as it is currently defined.

3.2.1. Functional Module Definition

The functional modules form the computational heart of the ASTROS system. A sequential file
contains character data records that define the following information for each module:

1. The name of the module

2. The number of formal parameters

3. If the module is a function or a procedure

4. The type of each formal parameter

5. FORTRAN code lines defining the module call

The purpose of these data is three-fold:

1. To provide the names of modules that are a part of ASTROS

2. To allow the validation of module calls including type checking of the input parameters

3. To define the way in which the results of a module are used and to provide the actual FORTRAN
link to activate a module

The format used to provide these data is described in the following section

3.2.1.1 The File Format

The module definition file is organized as a sequence of module entries.

MODULE(I) ENTRY
MODULE(2) ENTRY

Each module entry has the following form:

MODNAME, NPARM (A8,14)
MODTYPE, PARMTYPE(I) (2014)

FORTRAN LINES (A80)

END (A8)

where the first line consists of MODNANR and NPAm and the second line consists of NODTYPE and the first
19 PARxTYPEs. The PARMTYPES continue, 20 per line, on subsequent lines, as required to supply NPARM. PARMTYPES.

59

The lines following the PARNTYPEs consist of FORTRAN code (including, but not requiring,

comments or blank lines) which implements the module interface to MAPOL.

The last line of a module entry is the word END starting in column 1.

KODNAKE is the module name as it appears in MAPOL; 1 to 8 characters beginning
with a letter. The name is left-justified in an 8-character field.
is the number of formal parameters in the calling list of the module. This is
a right-justified integer in a 4-digit field. There is a limit of 50 parameters.

is a four-digit code for the module type:
100 means the module is a function with a fixed number of parameters

MODT2YPE 101 means the module is a function with a variable number of parameters
102 means the module is a procedure

PARWIPYPW The declared type of each parameter in the calling list selected from the
following codes, each a four-.digit integer:

1 Integer
2 Real

3 Complex
4 Logical
5 Not Used

6 Not Used
7 Relational Entity

8 Matrix Entity

9 Unstructured Entity

10 Real, Integer, or Complex

If the PAmTYPZ is entered as a negative value, the parameter is optional. Note that character

PAMYP~s are not supported.

Procedures

For procedures, a call is made to the ASTROS name with a parameter list having symbolic

arguments of the correct types. For example, if a module has the following parameters (in order)

with the specified data types:

3 Integers

1 Logical

1 Integer

1 Relation

1 Integer

1 Optional integer

1 Optional matrix

1 Matriix

1 Optional matrix

60

1 Logical

1 Matrix

1 Optional matrix

2 Matrices

1 Unstructured

2 Optional matrices

1 Optional logical

2 Optional matrices

1 Optional unstructured

then the call to this routine is coded as:

AOSIISDR 23
102 1 1 1 4 1 7 1 -1 -8 8 -8 4 8 -8 8 8 9 -8

-8
-4 -8 -8 -9

C
c PROcMSS 'AROBDR' WODUzM - SAMiO CONSTAINT SMUS. DRIVER
C

CALL AIOSDR C XP(1), XP(2), 1P(3), LP(4), IP(5), 3P(6), XP(7),
1 IP(8), XP(0), XP(10), ZP(11), LP(12), ZP(13),
2 3P(1•), ITP(15), 1P(16), 3P(17), 3P(18), 3P(19),

The subscripted array elements are used by the ASTROS sxecutive to pass the actual parameter
values. The subscripts must correspond to the order of the arguments in the MAPOL calling list. The
following array names are used:

ip - Integer Parameter
RP - Real Parameter
cp - Complex Parameter
LP - Logical Parameter
EP - Entity name

This method passes only scalar parameters to the FORTRAN driver. No mechanism is available to pass
FORTRAN arrays.

Functions

For a function, the resultant value is returned to MAPOL on the execution stack. To accomplish
this, the programmer must assign the numeric function result to the FORTRAN variables IOUT, ROUT,
and COUT that define the number to the executive. This is analogous to a function in FORTRAN, in which
the value must be assigned to the function name within the function unit.

61

A numeric value is defined as follows:

lOUT (1) Variable type key with the same definitions as in PARMTYPELIOUT(2,3) or
ROUT (2,3) or Contain the actual integer, real or complex variable value. ThesecOUT arrays are all equivalenced:

If the value is integer, only IOUT (2) must be defined. If the value is real, only ROUT (2) must be defined.
If the value is complex, then either couT must be defined, or ROUT(2) and ROUT (3) must be defined.
What is important is that the data in the second and third words be consistent with the type in IOUT (1).

Further if the function operation depends on the types of arguments (as do the FORTRAN generic
functions, e.g. MAX, SIN), the array

I TP(I), I=1, NPARAM

may be read in the module definition code to determine the type of argument passed. The PARMTYPE
definition should then be 10 to allow any type to be passed. TP uses the same definitions as PARMTYPE,
except the actual type of the argument is stored. In other words, TP contains a 1, 2, or 3 in the location
associated with type 10 parameters, depending on the actual type passed in the current call.

For example, if the sine function is desired, the following module definition would be used:

SIN I
100 10

C
C SIN - RETURN THE SINE OF THE ARGUMENT

C
IF(TP(1) .LE. 2) THEN

IOUT(1) = 2
IF (TP(1) .EQ. 1) RP(1) = IP(1)
ROUT(2) = STN(RP(1))

ELSE
IOUT(1) = 3
COUT = SIN(CP(1))

ENDIF
END

3.2.1.2 SYSGEN Output for Modules

The data defined by the module file are processed and the results are stored on the system
database in two entities. The first is a relation called MODINDEX. This relation has two attributes: the
first, MODLNAKE, is the module name and the second, ARGPONTR, is 9 pointer to the second entity. This
second entity is called MODLARGS. Each record of this unstructured entity contains the MODTYPE and
PARMTYPE data from the module definition file for a particular module. Additionally, the output of
SYSGEN includes a FORTRAN subroutine called XQDRIV. This routine is the module driver for the
ASTROS execution monitor- It must be compiled and linked into the system when adding or changing
module definitions.

62

@ 3.2.2. Standard Solution Algorithm Definition

The standard multidisciplinary solution algorithm, in the form of MAPOL source code state-
ments, is contained in a sequential file. The SYSGEN program reads this file and compiles a standard
sequence. The results of the compilation are stored on the system database in the form of two relations
and an unstructured entity. The first relation is called &xAP" X and has three attibutes: ADDRESS,
VARTYPE, and CoNTzNT. This relation stores the execution memory map for the standard MAPOL se-
quence. ADDRESS is an integer containing the address of the variable, VARTYPE is an integer denoting the
variable type and coNTEN is a two-word integer array containing the current value of the variable.

The second relation output from the compilation of the standard sequence is called &xACOD and
has three attributes: INSSEQ, OPCODE, and ARGUmaN. This relation contains the ASTROS machine
instructions that represent the compiled MAPOL sequence. INSSEQ is an integer containing the instruc-
tion sequence number, OPCODE is the machine operation code to determine the action to be taken, and
ARGUMENT is the argument to the operation - either a memory address of an immediate operand.

The final output from the standard algorithm definition is not directly related to the compilation
of the sequence. It is a relation called ax1psou containing the standard sequence source code statements
verbatim. This is stored on the syg&em database, allowing the user to edit the standard sequence to
generate a new MAPOL program which directs the ASTROS procedure. The relation has two attributes:
LINENO and SOURCE. LINENO is an integer containing the line number and soURcE is a string attribute
containing the 80-character source code line.

@ 3.2.3. Bulk Data Template Definition

The ASTROS bulk data decoding module (IFP) is driven by templates that are stored on the
system database during system generation. The template format for IP was adopted to allow for easy
installation of new bulk data entries and for easy modification of existing bulk data entries. The sequen-
tial file used by SYSGEN contains the bulk data templates for all the bulk data inputs defined to the
ASTROS system in arbitrary order.

3.2.3.1 The File Format

The template definition file has the followir3 format:

MAXSET (H8)
NLPTMP (18)
TEMPLATE 1
TEMPLATE 2

MAXSET is the maximum number of template sets used to define one bulk data input. Currently,
this value is five. NTPTW is the number of lines in each template set. Currently there are six lines in
each set. A bulk data template therefore consists of 1,2,3, ... MAXSET template sets, each of which
consist of rNPTW template lines which define the structure of the input entry. The definition includes the

63

field size, the field label, the field data type, the field defaults, the field checks, the field database loading
position and, if necessary, a list of relational attributes. The structure of the template set is as follows:

BULK DATA ENTRY LABEL
FIELD DATA TYPES
DEFAULT VALUES
ERROR CHECKS
FIELD LOADING POSITION
DATABASE ENTITY DEFINITION

A typical bulk data entry template in:

CQUAD4 31D I PXD I Q1 102 103 104 ITJI IZOf ICONT
S~I

CHAR INT INT INT INT INT INT INT/P.ALR*L CNAR
DEFAULT XID 0. 0.
CHECKS OT 0 GT 0 GT 0 UG 2 UG 3 UG 4 OT 0

1 2 3 4 5 6 7 9
CQUAD4 ZID PIDI GRID1 GRID2 GRID3 GRID4 CIDI TEMTA
+CQUAfD4I ITTAX ITI IT2 IT3 IT4 I

CHAR REAL REAL REAL REAL REAL
DEFAULT 1.Z4
CIMCKS as 0. a0 0. as 0. 01 0. 02 0.

10 11 12 13 -14

OFFST0 0 2tAX THICK1 THcL, THICK3 TNICK4

Th LABEL Template Set Line

The first seven columns of the first template set line define the name of the input data entry. The
eighth column is reserved for a field mark, "I". Columns 9 through 72 define the field labels and these are
separated by the field mark ""I . Columns 73 through 79 indicate to the decoding routines if a continu-
ation card is supported for this entry. On the first template set's LABEL line (the template set for the
parent line of the bulk data entry), the character string CONT indicates that a continuation line is
supported. Otherwise, these columns are ignored and a continuation will not be allowed for the entry
defined by this template. A continuation template set's LABEL line differs from the parent template in
that the character string ETC can be used in columns 73 through 79 of the continuation template set's
LABEL line to indicate an open ended entry having a repeating continuation. In this case, the same
continuation template will be used to decode all remaining continuation entries. A constraint on continu-
ation entries is that the input must extend to the third field (the second data field). This is a restriction
imposed by free format input. Also, note that ALL template set's LABEL lines must have a field mark in
column 80 to end the line.

The FIELD DATA TYpE Temnlate Set Line

The FIELD DATA TYPE Template Set Line defines the types of data that are allowed for each
field. Possible data types include: blank, INT (integer), REAL (real), CHAR (character), INT/RAL (integer
or real), INT/cHAR (integer or character), and REL/CHAR (real or character) The data type definition
characters (i.e., INT) must be left justified in the fields.

64

, hjqe DEFAULT Tempae Set Line

The DEFAULT template set line defines the default values of the fields. If the input data entry has
an empty field, the default value will be used as the input. All values, like the data types, must be left
justified in the fields. Three special cases for default values have been incorporated into the decoding
routines. The first is the case of a special user input entry to define the defaults for a template. In this
case the user 3upplied values will be substituted for the normal default values. The BAROR and GRDSET

entries are examples of special inputs used to define the defaults. The addition of any other special inputs
like these requires program changes in routines IFPBD, BDMERO, and IFPDEC. Another special case is in
the referral to another field of the same template to obtain the default value. Referral values can exist for
all data types except character (CHAR) data. In the case of a default referral, the current template set
LABEL line is searched for the label referred to and, if the label string is not found, all other template
sets, starting at the parent template set, are searched for the string. When the string is found, the
corresponding entry field is deccded to obtain the default value. An example of a referral is the PID field
of the CQUAD4 card template. Tha third special case for defaults is the use of a multiplier for an integer
default referral. This is only valid for integer type deta and the presence of a multiplier is defined by an
asterisk "*". For example, 3*NDN, where NDN is the label associated with another integer data field.

The ERROR CHECK Temp1te. Sejn Li e

The ERROR CHECK template set line directs data checking for the decoded fields. Each error check
specifies both the type of check and the check value. The available check types depend on the data type
(for example, Integer, Real, or Character). Checks that are currently encoded are shown in Table 1.

If additional checks are needed, subroutine INTCEK must be modified for integer checks, RELCEH
must be modified for real checks and CHRCHK must be modified for character checks.

When two check values are needed, as for the IB and EB checks, the first is located on the ERROR
CHECK template set line and the second is located in the same olumn position on the FIELD LOADING

POSITION line.
The FIELD LOADING POSITION TeqDlate Set Line

The FIELD LOADING POSITION template set line is used to place the converted data into the
database loading array. The sequence of the numbering is dependent on three conditions. The first is the
existence of CHAR data on the card. In this case, two hollerith single precision words will be used to store
an eight character input and the numbering must account for the two words. The second condition is the
sequencz of the attribute list for a relational bulk database entity. In this case the loading sequence is
determined by the sequence of the attribute list. The third condi~on occurs when a multiple data type
field is present, (e.g., REL/CHAR). In this case the first variable type is loaded at the given value and the
second variable type is loaded in the next word(s). Again this must be accounted for in the numbering
sequence. Finally, when a negative iateger value is given as the loading position, the database loading
array will be loaded onto the database if input errors have not occurred.

The DATABASE ENTITY DEFINITIOW TemDeat Set Line

The DATABASE ENTITY DEFINITION template set line names the database entity to be loaded
in the first eight columns of the parent template set, and the database attribute list -or relational entities, (Columns 9-72), of the parent template set. Column 80 is reserved for a map-end character ($). The

65

I
Table 1. Bulk DataTemplate Error Checks

CHECK DATA MEANING CHECK DATA MEANING
TYPE TYPE TYPE TYPE

blank all No check DTYPR Char Dancing type for the TABDI P1 entry
GT Int, Real Greater than MPREC Char Matrix precision forDMI and DMIG entries
GE Int, Real Greater than or equal MFORM Char Matrix form for DMI and DMIG entries

NE Int, Real Not equal FFTl Char Interpolation method for the FFT entry
LT Int, Real Less than FFT2 Char Output format selector for the FFT enty
LE Int, Real Less than-or equal MASiF Char Mass matrix form option for the MFORM
EQ All Equal "entr

ZB Int, Real Exclusive in between NTYPL Char Element name for the ELEMLIST and

IB int, Real Inclusive in between DcoNTHK entries

NOR. Int, Real Ebhr or CCI Int Material property defaulting check for the

Greater than or equal to the previous PCOMP entry
GRP Int, Real value CCR1 Real Laminae thickness defaulting check for

UG Int Unique grid the PCOM entr

RUG 111t Enty or unue rid CCR2 Real Laminae orientation angle defaulting
check for the PCOMP entry

COMP Int A set of component numbers Laninae orentation angle and thickness
MID3 Int PSHELL MID3 matenalcheck CCR3 Real defaulting check for PCOMPI and
M=4 Int PSHELL MlD4 material check PCOMP2 entry

SA Int SPCADD, MPCADD combination check GTZOB Int, Real Greater than zero cc blanlk
Grid check on the EIGI fanily of input GEZOB Int,Real Greater than or equal to zero or blank

__G__ Int__ entries ULC Int lUST, ILST, and/or ICAM check for the

NIGC Int Component check on the EIGI family of AIRFOIL entry
input entries LAXCHK Int DOONLAM/DCONLMN laminate defhri-

112 int i12 chgck on the CBAR enty I ton check

MATG Int E and G check on the MATI er.ay PLYNORS Int DCOlLAM/DCONPMN ply definition

NT_ Real Check E, G and NU for the MAT1 _ _y_

IDES Real Dign vaiable range check NEBLK Char Not equa to blank
Element name fo the DCONFTP and

F.T. Char Failure theory for the PCOMP entry ZTYPC Char Emn tP rt

PTYP Char Pr.ery type for the PST ent PTYPC Char Property name for the DCONFIP and
type for the _____ DCONTWP entrie

ETYP Char Element type for the ELIST entry ETYPS Char Element name for the DCONEP and
HORN Char Normalization method for the EIGi family DCONVYCa entries

of input entries PTYPB Char Property name for the DCONEPP and

CMETR Chr r Solution method for the EIGP entI r. DCONVVP et _ies

IlMETH Char Solution method for the EIGR entry STYPE Char Control surface symmetyWe
L.O. Char Lamination option for POOMPi entris TRIM Char TRIM type

ACMP Char Component type for airfoil and CAER06 UK_ Char UM flag for RBEi entries
_ntries Acceeation Mel check for OCONSCF

BCXP Char CGnponent type for BODY and PAERk TRMACC Char
entries _- SCPIW Char Parameter lael check for DCONSGF en-

BTYP Char Body orienteatin type for the PAERO•6 _CRha bty
_, _ eng SCFUNIT Char Unit label check for DCONSCF ent

Convere'vi factor quantity type for the VTYPE Char Velocity type checkfor DCONFLTentry
CONV Cha: CONVERrentry I Constrait type check for DCONLIST en-

CTYP Char Upper or Lower bound constraint check DChNTYP Char
______ Char ______try_____

for DCONXXX, etries FLTFIT Char Curve fit tyecheck foi FLUTTER eny
210ETH __.Char • utteran. ssmez~odfthefluttqrenr T C6K Char DCON6LMN laminate check

66

. map-end character indicates the end of the template, and so must occur only on the last database entity

definition line for the final set of the template.

3.2.3.2 SYSGEN Output for Template Definitions

The SYSGEN outputs consist of an unstructured entity called SYSTMPLT which contains the
templates and a relation called TxPPOiNT which allows efficient access to particular templates. The
SYSTMPLT entity contains one RECORD for each bulk data template in the order it appears in the input
template definition file. Therefore, the RECORDs are of variable length with the longest RECORD contain-
ing 80 characters for each of MAXSET template sets of NLPTNP lines. The TMPPOINT relation has two
attributes: CARD and RECORD. CARD is an eight character string attribute containing the name of the bulk
data entry and RECORD is the number where the template is stored in SYSTMPLT.

3.2.4. Relational Schema Definition

Each relational database entity requires a SCHEMA That defines its data attributes. A sequential
ifie, containing character data, is used to define these schemata. For each relation there is a list of the
attribute names, their types, and, if they are arrays or character data, their length. The details of this file
are described below:

3.2.4.1 The File Format

The schema definition file is organized as shown below:

REL(1) ENTRY
REL(2) ENTRY

REL(NREL) ENTRY

Each RELATION entry has the following form of free field input. Each input may appear anywhere

on the line separated by one or more blanks except "RELATION" and "END".

RELATION RELNAME
ATTRNAME ATTRTYPE ATTRLEN
END

where

RELATION is the keyword "RELATION" which signifies that a new RELATION schema
follows. Must begin in column 1.

RELNAX is the name of the RELATION; it may be one to eight characters beginning
with a letter.

ATTRNAME is the name of the attribute; it may be one to eight characters beginning
with a letter.

ATTRTYPE is the type of the attribute selected from:
'I) ' Integer

'KINT' Keyed Integer

67

'AINT' Array of Integers E
'RSP' Real, single precision
'ARSP' Array of real, single precision
',DP' Real, double precision
'STR' Character string
'KSTR' Keyed character string

ATTRLEN is the optional length of the Attribute. If it is of type AINT, ARSP, ARDP,
STR, or XSTR, the length is not optional. For other types, it should be zero or
not present.

END is the keyword "XNV" which signifie, the LsD of the RELATION schema.

3.2.4.2 SYSGEN Output for Relations

The data defhned by the RELATION schema file are processed and the results are stored in twc
entities or the L'ystem database. The first is a RzLATIcu called RHLINDEX. This entity has an attribute
RBLTNAME containing the name of the RuLATION and an atiribute SCHMPNTR which is an integer pointer
to an unstructured entity called RELSCHuz. The R]MLSCHE entity contains a list of attribute names, t*pes
and lengths for each RzLATION. Each RELATION has one tuple in the RBLINDRBX RELATION and one
RECORD in the RELSCHM4 entity. Each tELSCNEM RECORD consists of a four -word entry for each attribute:
two hollerith words containing the attribute name, one hollerith word containing the attribute type and
an integer word containing the attribute length.

3.2.5. Error Message Taxt Defirition

The text of ASTROS run time messages is stored and maintaned on a sequential file which is
used during system generation to create SYSDB entities for u"e by the ASTROS me&sage writer utility
module. There are two reasons for maintaining the message text on an external file (and on SYSDB).
First, the storage of message text within the functional modules would use & large amount of memory
during execution. Second, storing the mescages together in an external file allows for easier mcintenance
and aids in avoiding needless duplication in message texts. The messages stored on SYSDB from this file
are used by the ASTROS utility UTmwRT to build error messages during execution.

3.2.5.1 The File Format

The message text file is organized as follows:

*MODULE 1 (<header>)

messages

*MODULE 2 {<header>)

messages
*MODULE 3 (<header>)

*MODULE <n> kheader>l

68

The header is an optional label of any length or content up to 120 characters that typically would
describe the relationship among the messages for the specified module. In this way, messages that are
logically related (for example, all error conditions from the IFP module) can be grouped together for
simplified maintenance. The module number <n> is a unique integer identifying the base module number
for the group of error messages. It need not be consecutive, which allows for randomly numbered mod-
ules.

The format of the message text is as follows:

I 'message text $ more text $... '

the string is enclosed in a single quotation marks because the message will be used as a character string
in a FORTRAN write statement. The $ (dollar sign) is used by the UTMWRT utility to place character
arguments into the string. For example,

1 '$ ELEMENT $ IS ATTACHED TO SCALAR POINT $.'

would appear for CTRMEM element 100 attached to scalar point 1001:

CTRMEM ELEMENT 100 IS ATTACHED TO SCALAR POINT 1001.

If the user wishes the message to carry over to the next output record, the FORTRAN format RECORD
terminator (W) can be used outside the quotation marks to cause a record advance. For example:

S'THIS IS ON LINE V'/' THIS IS ON LINE 2.'

Currently there is an implementation limit of 128 characters for the length of the message text after
including the arguments. Further details are given in the documentation for the UTWRT utility module.

.z.5.2 SYSGEN Output for Error Message Text

The data in the message file are used to create two system database entities. The first is an
indexed unstructured entity called ERPMSG. This entity contains one line of the message text file in each
record. The second is an unstructured entity called ERMSGPNT which has one record. That record has two
words for each module defined in the message file. Those words are the module number <n> and the
record number of the EREMSG RECORD containing the module header. These are used by the UTXWRT to
position to the proper message text when called.

69

3.3. GENERATION OF THE ASTROS SYSTEM

Following the execution of the SYSGEN program the system installation proceeds to the genera-
tion of the ASTROS executable image. As indicated in Section 3.2, the SYSGEN program writes a
FORTRAN program called XQDRIV which must be linked with the remainder of the source code to form
the ASTROS system. It is this FORTRAN program which provides the flexible interface between the
ASTROS executive and the remainder of the ASTROS modules. to generate the ASTROS system, there-
fore, it is essential to execute the SYSGEN program as a first step.

ik th The SYSGEN execution is only required once to generate the standard version of ASTROS. This
is the version that is defined by the delivered set of SYSGEN input files described in Section 3.2. If,
however, the users of the system at a particular installation desire to insert additional modules, the
SYSGEN program must be re-executed to recreate the XQDRIV submodule. The users may also want to
modify other SYSGEN inputs to update the system database to include additional input entries or new
relational schema, These changes also require the re-execution of the SYSGEN program (to update the
system database) but do not require an update of the ASTROS system. For most purposes, only the
module definition file described in Section 3.2.1 requires that the ASTROS executable image be recreated.

70

4. EXECUTIVE SYSTEM

The ASTROS executive system, as described in Section 3 of the Theoretical Manual, may be
viewed as a stylized computer with four components: a control unit, a high level memory, an execution
monitor and an Input/Output subsystem. The first three components comprise the executive system
modulea -while the I/O subsystem is embodied in the database. The ASTROS modules that comprise the
executive system perform tasks to establish the ASTROS/host interface, initiate the executiin and, upon
completion of the MAPOL instructions, terminate the execution. These modules also compile the MAPOL
sequence, if necessary, and initiate the execution monitor that interprets the MAPOL iastructions guid-
ing the execution. This section documents the modules of the ASTROS executive system.

The typical user of ASTROS need not be familiar with the executive system modules since their
execution path does not have the flexibility that is available for the engineering modules. The executive
modules, however, are important from the viewpoint of the system manager and the program developer
for several reasons. First, problems with the machine dependent library on a new host system often show
up during the executive modules' initialization tasks. The executive system modules are also important in
iuaderstanding the treatment of the user's input data stream. To isolate the use of external files to the
executive system, for example, the PRim. executive module reads the input data stream and loads those
portions that deal with the MAPOL, Solution Control and Bulk Data packets to the database. The system
manager, therefore, may find it useful to study the nature of the executive modules and their interrela-
tionships to better understand the implemcntation of the ASTROS architecture.

71

Executive System Module: ASTROS

Entry Point: ASTROS

PURPOSE:

ASTROS is the main entry point for the ASTROS procedure. It controls the execution path through the
executive system modules.

MAPOL Calling Sequence:

None

Application Calling Sequence:

None

Method:

The ASTROS routine first sets a flag to tell the executive modules that subse4uent calls are associated
with the ASTROS procedure rather than with the SYSGEN program. Tbhs flag is required since the
compiler and other executive routines are shared between the two programs and require sightly different
execution paths. The machine dependent initialization routine, XXINIT, is then called to perform the
initialization tasks required on the current host eystem. The initialization is completed by zeroing the
execution monitor's stack length, calling the machine independent initialization routine, XQINIT,
labeling the output listing and the starting the timing summary.

The PRZPAS module is then called to read the user's input data stream. On return from PRzPAS, the
MAPOL compiler is called if a MAPOL compilation is required. Finally, the execution monitor, XQTMON,
is called to interpret the ASTROS machine instructions representing the compiled MAPOL sequence.
All subsequent activities in the ASTROS execution are controlled by this module until all the MAPOL
"iinstructions have been completed. Upon return from XQmON, the main driver terminates the execution
by writing the closing label, calling the XQBMS module to close the 3atabase, dumping the timing
summary and performing any other closing tasks.

The engineering modules (addressed by the execution monitor) may also terminate the execution of the
system. In these casec, thc genez al application utility module, UTEXIT, is used since this routine assumes
that an error esit has occurred. UTEXIT, however, also calls the XQENDS executive module to assure
clean termination of all executions.

Dege Requirements:

None

Error Conditions:

None

7
72

* Executive System Module: XQINIT

Entry Point; XQINIT

PURPOSE:

To perform machine independent system initialization tasks.

MAPOL Calling Sequence:

None

Application CalLng Seauence:

CALL XQ'NIT

Method:

This routine completes the page titling information on the TITLE line used by the UTPAGE utility. The
ASTROS version number is placed in TITLE (which is in the /OUTPUT2 / common block) in characters
88 through 107. The current date is obtained using KXDATE and placed in characters 109 to 117. The
page number label is then placed in characters 120 to 121. Thus, the page number itself is left to fit in
characters 123 to 128.

Design Requirements:

None

Error Conditions:

* None

73

Executive System Module: PREPAS

Entry Point: PREPAS

PURPOSE:

7b perform the first pass through the user's input data stream, to initialize the open core memory
manager and to attach the scratch and system databases.

MAPOL Calhýig Sequence:

None

Application Calling Seiuence:

CALL PREPAS (MAPFLG, SOLFLG, BLKFLG)

NAPFLG Integer flag denoting the presence or absence of a MAPOL packet in the
input data stream (Output)
= 0 if no MAPOL packet
- 1 if a MAPOL packet exists in the input stream

SOLFLG Integer flag defined like MAPpLG denoting the presence or absence of a So-
lution Control packet in the input data stream (Output)

BLKFLG Integer flag defined like NAPFLQ denoting the presence or absence of a
Bulk Data packet in the input data stream (Output)

Method:

This routine performs the first pass over the user's input data stream, performs actions based on the
ASSIGN DATABASE, DEBUG and MAPOL EDIT command inputs and prepares MAPOL, solution control
and bulk data inputs for access by the appropriate modules. The order of operations is crucial and can
be summarized as follows:

1. T he debug packet must be processed first since the debug flags can affect the memory management
system.

2. Immediately following the debug packet, the memory manager must be initialized, and the scratch
(run-time) database (based on the ASSIGN DATABASE entry) and the system database must be
attached, in that order. The order is dictated by the requirement that the memory manager be
available for the DBINIT calls and the scratch database must be allocated before the system
database. The system database must be allocated in order to process the MAPOL packet (which may
apply WEDIT operations to the standard MAPOL sequence stored on the system database).

Once the ASSIGN DATABASE and debug packets are processed, the remaining packets could be ordered
in any fashion, but a fixed sequence of MAPOL, solution control and bulk data packets has been imposed.

The procedure used in PREPAS is to read the input stream one 80-character record at a time. The first
nonblank records must be the ASSIGN DATABASE entry. The corresponding records are set aside in
ASNCRD for use after the debug packet is processed. After the ASSIGN DATABASE entry has been
encountered, each input record is read and searched to see if one of the input stream keywords appears
in the first eight characters following the first nonblank character. The keywords are:

1. DEBUG denoting the start of the debug packet

2. MAPOL denoting the start of the MAPOL packet containing a complete new MAPOL sequence

74

3. EDIT denoting the start of the MAPOL packet containing edit commands to be applied to the

standard sequence

4. SOLUTION denoting the start of the solution control packet

5. "BEGIN-" denoting the start of the bulk data packet. Note the trailing blank after BEGIN and the
absence of the optional BULK keyword.

6. ENDDATA denoting the end of the bulk data packet

7. INCLUDE naming the secondary file from which to read the input

Note that all the keywords except En.wATA and INCLUDE mark the beginning of a new packet. The
INCLUDE keyword does not changs the current packet and ENDDATA marks the end of the valid input.
If the current record is one of tLe keyword records, flags are set to indicate that a new packet has been
initiated or, for INCLUDE, the Liclude file is opened and processing continues with the new input file
until it is exhausted. Records that are not keyword records are processed as follows:

1. DEBUG packet records are sent to the CRKBUG utility to interpret the debug commands and set the
executive system debug command flags in the /EXECo2 / common and set the other debug command
flags by UTSFLG to activate run time debugs.

2. MAPOL packet records representing a .replacement MAPOL sequence are written to the unstruc-
tured entity &NAPLPKT for processing in the MAPOL module.

3. MAPOL packet records representing an EDIT of the standard sequence are passed to the MAPEDT
subroutine to be interpreted. The resultant MAPOL sequence is written to the unstructured entity
&KAPLPKT for processing in the MAPOL module.

4. SOLUTION packet records are written to the unstructured entity &SOLNPKT for processing in the
SOLUTION module.

5. Bulk Data packet records are written to the unstructured entity &BKDTPKT for processing in the IFP
module.

Design Reguirements:

None

Error Conditions:

1. Input stream does not begin with an ASSIGN DATABASE entry.

2. An input stream keyword appears out of order.

3. An ENDDATA statement appears outside the bulk data packet.

4. No filename was found on an INCLUDE statement.

5. INCLUDE file cannot be opened.

6. Input record lies outside any input packet (typically following an ENDDATA)

7. FORTRAN read error on the primary input stream or included file.

8. An INCLUDE statement appearing in a included file.

75

Executive System Module: XMINIT 6
Entry Point: MKINIT

PURPOSE:

To initialize the memory manager.

MAPOL Calling Sequence:

None

Application Callng Sequence:

CALL MNINIT (SIZE)

SIZE The number of single precision words in open core (Integer, Input)

Method:

This routine establishes the initial block headers for open core memory. A block header is written
representing one free block of sizz words lees those required for the block header. The block header is
either six or eight words depending on whether the wwoRY debug has been selected by the user in the
input stream. The size must correspond to the actual declared length of the open-core common block
/XMEORY/.

Design Requirements:

None

Error Conditions:

None

76

* Executive System Module: DBINIT

Entry Point: DBINIT

PURPOSE:

To initialize the processing for a database.

MAPO", Calling Sequence:

None

Application Calling Sequence:

CALL DBINIT (DBNAME, PASSWD, STAT, RW, USRPRM)
DBNAME The database name (Character, Input)

PASSWD The database password (Character, Input)

STAT The database status (Character, Input)
One of OLD, NW, SAVE, PERM or TEMP

RW Read/Write status (Character, Input)
One of Ro or R/W

USRPRM Installation dependent user parameters (Character, Input)

Method:

This routine opens the named database for access. It performs any machine and installation dependent
processing by accessing the database machine dependent library routines DBMDCX and DEWDIx. All the
in-core buffers required for subsequent database access are allocated using the database memory
management routines.

Design Requirements:

1. The first call to DBINIT must define the run-time or scratch database. Any other databases may
then be initialized.

Error Conditions:

1. Any error conditions on the file operations occuring in DBINIT will terminate the execution.

Entry Point: DBCINI

PURPOSE:

To initialize the processing for a database and return a status code rather than terminate on error.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBCINI (DBNAME, PASSWD, STAT, RW, USRPRM, ISTAT)
DBNAME The database name (Character, Input)

77

PASSW" The database password (Character, Input) 4
STAT The database status (Character, Input)

One of OLD, NEW, SAVE, PERM or TEMP

RW Read/Write status (Character, Input)
One of RO or R/W

USPPRN Installation dependent user parameters (Character, Input)

ISTAT Return status
1 - Duplicate database name
2 - Too mtmy databases open
3 - Bad FN parameter
4 - Index file block size too small
6 - B,_d data in file found on old open
6 - Password check failure on old open
7 - Old formatted database not supported
8 - Read only open on new database illegal
9 - Bad STAT parameter
100 - Values are machine dependent - see DEMDIX

Method:

This routine opens the named database for accoss. It performs any machine and installation dependent
processing by accessing the database machine dependent library routines DBm X and DwXDIX. All the
in-core buffers required for subsequent database access are allocated using the databese memory
management routines.

Design Requirements:

1. The first call to DBINIT must define the r -n-time or scratch databpse. Any other databases may
then be initialized.

Error Conditions:

1. Any error conditions on the file operations occuring in DBC 1HZ will be flagged using the ISTAT
parameter and control returned to the calling routine.

78

* Executive System Module: lAPOL

Entry Point: MAPOL

PURPOSE:

To compile a MAPOL program.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MAPOL

Method:

The input MAPOL program or a MAPOL program representing a molified standard sequence is readfrom the &MAPLPKT unstructured entity and compiled. The resultant machine code instructions andmemory map are written to the XCODI and MORY entities for use by xQoN in executing the MAPOL
program.

Design Requirements:

None

Error Conditions:. 1. MAPOL syntax errors

2. Illegal argument types used in MAPOL module calls

79

Executive System Module: XQTMON

Entry Point: XQTMON

PURPOSE:

7b execute a set of ASTROS machine instructions representing a MAPOL program.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL XQTMON

Method:

If no MAPOL pa;.ket was in the input stream, XQTMON copies the standard sequence machine instruc-
tions and memory map from the system database into the mCODs and MEMORY entities. If a MAPOL
compilation took place, the current sequence's data are already in mcons and MEoRY. Beginning with
the first instruction, which is passed to XQTMON from the MAPOL compiler or retrieved from the system
database, ihe machine instructions are executed by this module.

Most instructions are processed directly by the XQTMON module; for example, stack operations, entity
creations and scalar arithmetic operations. If the instruction is a module call, however, the XQDRIV
executive subroutine, previously written by the SYSGEN program, is called to access the MAPOL
module to which the machine instruction refers.

Design Requirements:

None

Error Conditions:

MAPOL run time errors

80

* Executive System Module: XQENDS

Entry Point: XQENDS

PURPOSE:

To cleanly terminate the ASTROS execution.

MAPOL Calling Sequence:
Noxipe

Application Caing Sequence:

CALL XQENDS

Method:

The executive module's database entities that remain open throughout the ASTROS execution are closed
and the DBTEMw executive module is called to close the database(s).

Design Requirements:

None

Error Conditions:

None

0

0

81

Executive System Module: DBTERM

Entry Point: DBTERM

PURPOSE:

rb terminate processing of all open database.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBTERM (DBNAJE)

DBNANE Database name or blank (Character, Input)

Method:

The database entity name table (=NT) is searched and all open entities corresponding to DBENAM are
closed and the mar deleted. If DsNAmm is blank, all open entities on all databases are closed but the WiTs
are not deleted. If all databases are to be closed, the database name table (DBNT) is searched and all
in-core buffers are freed. The first record of each database is updated to indicate that it was properly
closed and any system dependent termination is performed. If a particular database is to be closed, these
operations are done only for the named database. Finally, if all databases are closed, the WNT, DBNT and
the name substitution table (NST) are released at the close of the DBTIUL

Design Requirements:

None

Error Conditions:

None

82

5. ENGINEERING APPLICATION MODULES

The modules documented in this section fall under the category of engineering application mod-
ules. These modules constitute the majority of the ASTROS software and and do the tasks necessary to
perform the analyses supported by the ASTROS system. Unsurprisingly, the difference between an
"engineering application" module and other modules in the ASTROS system is not always clear. The most
useful definition may be that an engineering application module is one that does not fall into any other
category. They do, however, share some common attributes that can be used to help distinguish them
from other modules. First, an engineering application module has no application calling sequence: it is
only accessible through the executive system. A related attribute is that no engineering module may be
called by another module, whereas util'ty modules may be called by other modules or by the executive
system. Finally, an engineering application module is one that establishes an open core base address by
calling the 0z3AsE and/or iwdaasc utilities and uses that one base address throughout its execution.

The following subsections document each of the engineering application modules that comprise
the ASTROS system. Each module is documented using the standard format shown in the introduction,
but some additional comments are necessary. First, the MAPOL language allows the use of optional
arguments in the calling sequences. This feature has been used in many modules to provide optional
print selections or to allow the module to be used in slightly different ways. This is particularly true for
the matrix reduction "modules" (c-mmucE, Fm ucE and lzcoVA) which may almost be considered utili-
ties. When the argument in the MAPOL calling sequence is optional, it is so indicated in the calling list.
The METHOD section then describes the alternative operations that take place depending on the pres-
ence of the optional argument.

A second point to emphasize is the general nature of the METHOD sections for the engineering
module documentation. In no way does this documentation attempt to lead the reader through the code
segments of the module. Instead, a general descripton of the algorithm is given which, in combination
with the in-line comments, should give the programmer an adequate understanding of the module. The
system programmer wanting to make extensive software modifications to existing modules will still need
to study the actual code segments in some detail. The level of detail in the engineering module documen-
tation is considered more appropriate for the ASTROS analyst/designer who wants to understand how
ASTROS uses the existing pool of engineering modules and to know the "initial state" that the module
expects to exist when it is called. The analyst may then make "nonstandard" use of the module to perform
alternative analyses. These, therefore, are the data emphasized in the module documentation that fol-
lows.

83

Engineering Application Module: ABOuND

Entry Point: ABOUND

Purpose:

'Tb generate flags for the currem, t nundary condition that indicate which constraint types are active.
These are then returned to the executive sequence to direct the execution of the required sensitivity
analyses.

MAPOL Calling Sequence:

CALL ABOUND (NITER, BC, CONST, ACTB01MD, NAUS, NACSD, [PGA•3], tUA13, .RCTAERM,
ACTDYN, ACTFLUT, rndPC, NSPC, NaMIT, NRSET, NGDR, MrT(BC.);

NITER Design iteration number. (Integer, Input)

BC Boundary condition identificatiox, number. (Integer, Input)

CONST Relation of constraint values. (Character,; input)

ACTBOMUJ Flag denoting if the boundary condition ic active. (Integer, Oatput)
- 1 if active
= 0 if inactive

Number of active STATICS displacement vectors. (Integer, Output)

Number of active STATICS stress and/or disp7acement conetraints.
(Integ-r, Output)

(PGAS] Partition vector for active STATTCrt displacement vedtors. (Output)

PCAS Unstructured entity which contains the unique STATICS subcase num-
bers for the displacement dependent wzmIv; consuraints that are active
for the boundary condition. Only constraint2 .or the current boundary con-
dition are included in the list. (Output)

ACTAERO Flag denoting the presence of active aero-l! ,•ic fffectiveness constraints.
(Integer, Output)
- I if any effectiveness constraints are active
- u if none are active

ACTYN~ Number of active frequency cor.straints. (Integer, Output)

ACTFLUT Number of active flutter constraints (Integer, Output)

N10C Number of mPC degrees of freedom. (Integer, Output)

NSPM Number of sPc degrees of freedom. (Integer, Output)

N1IT Number of omitted DOE (Integer, Output)

MRSET Number of support DOF. (Integer, Output)

MGDR Denotes dynamic reduction in the boundary condition. (Integer, Output)
= o No UDR
= -1 GDR is used

USzT (EC) The unstructured entity defining structural sets for each degree of free-
dom. (Character. Input),

84

Application Calling Sequence:

None

Method:

The module first reads the CONST relation for active constraints associated with the boundary condition.
If any entries are found, the AiTwOmm flag is set to on. Yf not, control is returned to the executive.

The CASE relation is then read for all su~cases associated with the boundary condition. The number of
STATICS subcases is counted ih preparation for determining the partitioning vector of active subcases
and the counts of right-hand-sides and constraints that will determine if the gradient or virtual !oad
method will be used in sensitivity analysis. Sxamt.O disciplines cannot use the virtual load method nmd
are therefore not treated in this manner.

Then the USET and CASE entities are searched to set the boundary condition flags that are output to
control the reduction processes during the sensitivity phase. Then the work of the module begins.

The active subcases and constraint types are determined for each ofethe eatries in sONST that were read.
During the pass through the active constraint set, the partitioning vector for the STATICS displacement
matrix is built (of the number of right-hand-sides columns, only the NRUS columns wili be active). For
STATICS constraints that are dependat on the displacement vector deriv3tives, the active subcase is
identified and the partitioning vector, PoS, and the set of subcae ids that fre active, Cas, are loaded.

Then a summary of all the active constraints for the boundary condition is echoed to the output file.

Desio Requirements:

1. This module must follow the complete analysis phase for all the boux.dary conditions and is the first
module called within the sensitivity boundary condition loop.

Error Conditions:

None

X

85

Engineering Appl.ication Module: ACTCON

En Point: ACTCON

To determine whether the design task has converged. If the optimization has not convergpd, this module
selects which constraints are to be included in the current redesign. On print request, this routine
computes and prints the values of the local design variables.

MAPOL Calling Sequence:
CALL ACTC1 (NITER, MAXITER, NRFAC, NDV, GLEDES, WCLVAR, [PTaANS], rPS,

APPCM.VG, GLBCNVRG, CTL, f:TIMIN, CONST, EAHAT], DESHIST,
PFLAG, OLOCALDV) ;

NITER The current iteration number. (Integer, Input)

MAXItIR The maximum number of allowable iterations. (Integer, Input)

NRF"AC Determines the minimum number of retained constraints equal to
NRFAC*NDV. (Real, Input)

NDV The number of global design variables. (Integer, Input)

GLrDES Relation of global design variables. (Character, Input)

LOCLVAR Relation containing the relationship between local variables and global
variables in the design problem. (Character, Input)

[PTRMS] The design variable linking matrix. (Character, Input)

EPS A second criteria for constraint retention. All constraints greater than or
equal to EPS will be retained. (Real, Input)

APPCWVRG The approximate problem converge flag from module DESIGN or FSD
(Logical, Input)
- F•ALSE if not converged
- TRUE if no change in objectivc function value and design variables

GLBE-KJG Final convergence flag (Logical, Output)
- FALSE if not converged
- TRUE if global converge was achieved

CTL Constraint tolerance for active constraints. (Real, Input)

CTU61N Constraint tolerance for violated constraints. I(Real, Input)

CONST Relation of constraint values. (Character, Input)

(MMTl The matrix entity if constraint gradients. (Output)

DESHIST Relation of design iteration information. (Character, Input)

PFIAG Thb logical flag to indicate if design model punching is requested for the
current iteration. (Logical, Input)

OLOCALDV Relation to store the output local design variables requested in solution
control (Character, Input)

86

Aimication Calling Sequence:

None

Method:

The initial action of the ACTCON module is to flush the [AMT] matrix of constraint gradients for the
sensitivity analysis that is to follow. This erases the constraint sensitivities from the previous design
iteration and prepares the matrix to be loaded by the constraint sensitivity evaluation modules.
Following this bookkeeping task, the ACTCON module belin. the process uf selecting the active
constraints for the next redesign cycle. The first computation of the number of retained constraints is
done using the value mrAc*NV. This represents a minimum number of constraints to ratain. The
vector of current constraint values i& brought into core and sorted. Then the EPS value and initial number
ofretained constraints are used to determine the cutoffvalue for the active constraints. This cutoffvalue,
CMIN, will either be the constraint value such that xmyC~*lNv constraints are retained, the constraint
value closest to, but less than, EPS or the minimum constraint value if there are fewer than N!r3AC*DV
constraints. During this phase the count of thickness constraints that are retained even though they do
not satisfy the NRFAC and EPS retension criteria is kept. A summary is printed that indicates the number
of constraints kept for each reason: NRFAC, EPS and DCONTER.

If the approximate problem convergence flag, APPCiNvR, is TRUE, the maximum constraint value is
tested to determine if global convergence has been achieved based on CTL and cTumbm. The GLSCWrRG
flag is set to TRuz if global convergence has been reached.

The next task of the ACS:CON module is to set the active constraint attribute in the CONST relation. This
is done by retrieving each tuple of the CONST relation and comparing the constraint value against the
cutoff value, CHIN. The appropriate constraints are then marked active by setting the ACTVFLhG
attribute to unity. Finally, the ACTCON module prints out the results of the design process if global
convergence or the maximum numbee of iterations has been reached. This includes the print of the
design iteration history and, if requested by Solution Control, the summary of global and local design
variables.

Design Requirements:

1. ACTCON must be the first module called following the analysis phase of the optimization segment of
the standard sequence. That is, it follows all the analysis boundary conditions but precedes the
sensitivity evaluations.

Error Conditions:

1. No design constraints have been applied in the optimization problem.

87

Engineering Application Module: AEROE FFS

EntaPoint: AROSEF
Purose:

Evaluates aeroelastic effectiveness sensitivities.

MAPOL Calling Sequence:

CALL AMMOEFFS j NITER, BC, SUB, SYM, NDV, CONST, PCAE, [EZFSENS], [T]);

NITER Current iteration number. (Input, Integer)

BC Current boundary condition number. (Input, Integer)

SUB Current static aeroelastic subscript number. (Input, Integer)

sYM Symmetry flag for the current call. Either 1 for symmetic or -1 for anti-
symmetric. (Input, Integer)

MDV Number of global design variables. (Input,Integer)

CONST Relation of design constraints. (Input)

PCAE Unstructured entity containing information indicating which pseudodis-
placements (displacements due to unit configuration parameters) are ac-
tive for the current design iteration. (Input)

EMSENS The matrix of dimensional stability derivative sensitivities. (Input)

AMAT The matrix of constraint gradients. (Output)

Method:

The CASE relation is read first to retrieve the SUPPORT set for the current boundary condition. The
"number and location of the support DOF are returned from the utility routine SZFCHK. Then the CONST
relation is read for active lift effectiveness (DCONCnA), aileron effectiveness (nconux) and stability
coefficient constraints (DcONscF) for the current boundary condition, subsc"ipt and iteration.

The •zrsms matrix, of dimension NSUP*MDV*MAUE wlhene Nsur is the number of support dofs and
NAUE is the number of active pseudodisplacemant fields of the set computed in SAzRO for the applied
constraints.

The whole EF.SENS matrix is read into memory and then the loop over active zonstraints begins. For
each active constraint, the DISPCOL attribute of the CONST relation is used to determine which column
of pseudodisplacements is associated with the cinstraint. The PcA. entity is thfn used to determine
which column of the reduced set of active pseudodisplacement fields is the proper column. Once located,
the constraint sensitivities may be computed from the dimensional stability coefficient derivatives and
the normalization data stored in the CONST relation in the -QAz-,Ro module. The constraint derivatives
are computed fromthe following relationships.

88

1 'A Effecti-eness:

Upper Bound

CLAREQ > 0.0
DG/DX = SENS ROW / (CIA RG CLAREQ 3

RIGID

CLAREQ < 0.0
DG/DX = -SENS ROW / (CIA 2 CLAREQ

RIGID
CIAREQ = 0.0

DG/DX = SENS ROW / CIA
RIGID

Lower Bound
CLnREQ > 0.0o

DG/DX = -SENS ROW / (CLA * CLAEQ
RIGI D

CLAREQ < 0.0
DG/DX = 3ENS POW / (CLA * CLAREQRIGID

CLAREQ = 0.0

DG/DX = -SENS ROW / CIA
RIGID

where CLARIGID is stored in the smspn attnbutc, of CONST and C•UREQ is stored in the SENSPIU*

attribute of CoNST

Aileron Effectiveness:

Upper Bound

AýEREQ > 0M0
DG/DX =(-SENS * CMXP + SENS * CMXA) I (AEREQ * CMXAP *2)

1 FIX 2 FLX FLX
AEREQ < 0.0

DG/DX =(SENS * CfltP - SENS * CMXA) / (AEREQ + aXP **2)
. FLX 2 FLX Fix

AEREQ 0.0

DG/DX =(-SENS CM.XP + SEWS CMA) / CMXP ** 2
1 FiLx 2 FLX FLX

Lower Bound

AER,-EQ > 0.0 -

DG/DX =(SENS * CIXP - SENS * CMXA) / (AEREQ * CXP *'2)X
1 FLX 2 FLX FLX

AEREQ < 0.0
DG!DX =(-SENS * CMXP + SENS * CIMXA) / (AEREQ * CM.XP "221

1 FLX 2 FLX FIX
AEREQ = 0.0

DG/DX =(SENS * CMXP - SE2S * CMXA) / CMXP ** 2
I FLX 2 FLX FLX -

89

where CMMAFLEX is stored in the sEsymSF aitribute of CONST and CMXPFLEX is stored in the
sE'sspnv attibute of COcNST arnd 2. Q AE.Q/(57.3*RE') is in SeSns 3

Stability" Coefficient:

Upper Bound

REQ > 0.0
DG/DX = SENS ROW / REQ

REQ < 0.0
DG/DX = -SENS ROW / REQ

REQ = 0.0
DG/DX = SEN3 ROW

Lower Bound

REQ > 0.0
DG/DX = -SENS ROW / REQ

REQ < 0.0
DG/DX = SENS ROW / REQ

REQ = 0.0
DG/DX = -SENS ,

where IEQ, the dimensional required value is stored in the SMNSPMI1 attribute of CMIST

The rows of ErrSNs associated with each constraint are dependent on the constraint type in the
following way:

(1) Lift Effectiveness constraints always use the plunge DOF

(2) Aileron Effectiveness constraints naways use the roll DOF-

(3) Stability Coefficient constraints always use the row associated with the constrained aias. The
constrained ayis number (1,2,3,4,5,G) is stored in real form in the sm;SP1* attribute of CoI, ST.

Desig Reoirements:

None

Error Conditions:

None

9
90

Engineering Application Module: AEROSENS

B AROSNS

Purpose:

To compute the sensitivities of the rigid body accelerations and aerodynamic performance parametera
(B coNTw) for active steady aeroelastic wubcases associated with the current subscript.

MAPOL Calling Sequence:

CALL AEROSENS (NITER, BC, MIND'aX, SUB, CONST, SYM, NDV, BGPDT(BC), STABCF,
EPGAA], [[LSA(BC,SUB)], [RHSA(BC,SUB)], [DRES], [AAR],

[DDELDV] * [AMAT]);

NITER Design iteration number (Integer, Input)

BC The boundary condition identificaLion number (Integer, Input)

MI•DEX Mach number index for the boundary condition to recover the proper sta-
bility coefficient data (Integer, input)

SUB The subscript identifier for the current SAE1o subcases (Integer, Input)

CONST Relation of constraint values (Character, Input)

NDV The number of global design variables (Integer, Input)

SYM The symmetry flag for the current SAEPO subcases (Integer, Input)

BGPDT(BC) RRelation of basic grid point coordinate data (Character, Input.

STABCF Relation of rigid stability coefficient data (Character, Input)

[PGAAI Partitioning vector used to obtain g-set active displacement and accelera-
tion vectors for all static aero subcases that have active trim parameter,
stress, strain and/or displacement constraints. (Input)

[LESA (BC, SUB)] Modified inertia matrix (Character, Input)

[RESA (BC, SUB)] Modified applied load matrix (Character, Liput)

[DRES] Matrix entity containing the sensitivity of ERHSA] to the design variables
(Character, Input)

[AAR] Matrix entity containing the sensitivities of structural accelerations
either zero (for fixed accelerations) or from solution of

LKSA*AAR = RHSA*DDELDV + DABS (Output)

EDDELDV] Matrix entity containing the sensitivity of the configuration parameters
to the design variables. Either zero (for F•x7n control parameters) or
from the solution of

LHSA*bAR = MESA*DDBLDV + DRES (Output)

[AMAT] Matrix entity containing the sensitivities of the active aeraelastic contrei pa-
rameter (DCc~q.H) constraints to the design variables (Character, Output)

91

A&plication Calling Sequence:

None

Method:

First the CASE Telation is read for the SAmRO subcases in the boundary condition. Then the STABCF
entity is read for the terms associated with the current MvuINnx. Tben the TEIK control linking and
control effectiveness data are read. Finally, the CONST relation for the active DCONTM•, stress and
displacement constraints associated with the current subscript value are read into memory. Then the
number of trim subcases (active/associated with SUB) is determined and the PGM imatrix is read and
the number of active subcases is determines. The number of columns in the mss1 matrix (=-.Dv*number
of active subcases for this suB value) is determined.

Ait this point, an trim solution very similar to the one done in the SM0o analysis module is performed
to solve for the A rigid body acceleration derivatives and the DDEWV trim parameter sensitivities.
The DRlS matrix is difficult to deal with since it must be partitioned for each subcase to just the NDV
columns associated with the subcase under consideration. (Just as in SAZao, each subcase must be solved
for independently since the effectiveness and control linking are subcase dependent.) Given the correct
IMV columns in DRES, the following matrix expression is available:

I ISff LBSfkI r ARLIr I= RHSkU M, Sf FDEL,] + [D I

LBk JRkk LLR,. "'k Rk]I--. DRHSkJ

Where: Represunts:

i+ Number of SUPOAT point DOF .

Set of free accelerations, AR

_ Set of known(FINW) accelerations, AR

U+s Number of ARo Darameters

_ _ Set of unknown parameters

C i Set of set(FIXSD) parameters

Note that Anwn and DEL, sensitivities are zero bydefinion

These equations must be rearranged to get free accelerations and unknown delta's on the same side of
the equation:

LS -4MB 11 AoR [rSRE FIwS
fu -D4ZM9a ist] f][kuj)L -L:k, .BS k]L +['

We must handle the degenerate case where all accelerations or all delta's are known. Once the solution
is obtained, the free acceleration derivatives and unknown trim parameter derivatives are unscrambled
and loaded into subease specific AAR and DDELV entities.

92

Finally, if any active DCONTRM constraints exJst, the AAA or DDA, LDV matrix for the current subcase is

used to compute the AMT terms for them.

Upper bound

REQ > 0.0
DG/DX = SENS / REQ

REQ < 0.0
DG/DX = - SENS / REQ

REQ = 0.0
DG/DX = SENS

Lower bound

REQ > 0.0
DG/DX = - SENS / REQ

REQ < 0.0
DG/DX = SENS / REQ

REQ = 0.0
DG/DX = - SENS

Where REQ is stored in the sEwsPmi attribute of CONST and sENs is the raw acceleration or deflection
sensitivity.

The final operation for the subcase is to merge the 1NDv A and DDELDV columns for the current subcase
into the output matrices. The output matrices have NDV columns for each active subcase in subcase order
of sa~o disciplines in the CASE relation.

Design Requirements:

1. This module assumes that either strength and/or DCONTIm constraints exist for the static aeroelastic
analyses in the current boundary condition.

Error Conditions:

None

93

Engineering Application Module: AMP 0
Entry Point: AMP

Purpose:

To compute the discipline dependent unsteady aerodynamic matrices for flutter, gust and blast analyses.

MAPOL Calling Sequence:

CALL AMP ([AJJTL], EDIJK], [D2JK], [SKJ], [QKKL], [QKJL], [QJJLI, [AJJDC]);

[AJJTL] Matrix containing the list of AC niatricos for each Mach number, reduced
frequency and symmetry option in transposed form (Input)

[D1JK] Real part of the substantial derivative matrix (Input)
[D2JK] Imagina -y part of the substantial derivative matrix (Input)

[sKJ] Integration mnatrix (Input)

[QKKL] Matrix list containing the matrix product:

[SKJ]*[TRANS (AJJT) 3-1* ([D1JK] + ik[D2JK])

used for flutter and gust analyses (Output)
[QLL] Matrix list containing the matrix product:

[SKJ] * [TRAS (AJJT) 1-1

used for gust analyses (Output)

(QJJL] Metrix list containing the matrix product:
[TRANS (.XJJT) 1 -1

used for nuclear blast analyses (Output)
[AJJDC] Optional scratch entity to store the intermediate matrix product:

[TRANS (AJJT)] -' * ([0D1j] + ik 0D2JK])

from the Q= matrix calculation (Output)

Application Calling Sequence:

None

Method:

The AM module begins by querying the c.sE relation and determining if any GUST, BLAST and/or
FLUTTER cases exist. If any of these disciplines or options are selected, the Am module proceeds to
compute the requisite matrix lists. The FLUTTER bulk data and the Una data are prepared in core using
the mErL and PRUNW utilities. As a separate step, the second record of the UNM is queried to determine
the number of aerodynamic interference groups in the model so that the structure of the aerodynamic
matrices can be interpreted correctly. As a final initialization task, the existence of both subsonic and
supersonic matrices is checked since the DlI and D231 matrices are different for subsonic and
supersonic aerodynamics due to the different control point used.

The module then begins to loop through the set of m-k pairs in the oiH entity. For each new Mach
number/symmetry group (denoted by the seRw flag), the UM and CASE relation data formed in PRUNNI
is checked to determine which of the three discipline dependent matrix lists are to be fcrmed for the
reduced frequencies associated with the Mach number and symmetry group. If FLUTTER or GUST

94

disciplines are associated with the Mach/sGRP set, the corresponding NJ columns of SKJ are extracted
from the sKi list input in the calling sequence. Also, the NJ columns of AJJTL are extracted irrespective
of the discipline options. Finally, if the QK= matrix is to be formed, the DiJK and D2JK are processed
depending on the presence of both subsonic and supersonic forms. This processing consists of the
extraction of the secondNK columns ofD1J and D2JK on the first supersonic Mach number encountered.
The appropriate matrices are then added together for the current reduced frequency as:

[DCJK] = [D1JK] + (O+ik)[D2JX]

At this point, the module is ready to deal with the AJJT matrix previously extracted. The processing of
this matrix depends on the presence of different interference groups in the unsteady aerodynamics
model. For the case with a single interference group, the extracted AJJT matrix is transposed and then
decomposed. If the QKK matrix is required, the following matrix is formed using the GVss utility:

[SCRDC] = [AJJ]-2.[DCJKI
If either the QJJ or QJK matrices are needed, the actual inverse of AJJ is formed and stored as QJJ. If

the QJK matrix is needed as well, the QJJ matrix is used to form the QJK matrix as:

[QJK] - [SKJ] [QJJI

If there is more than one interference group, the alternate path is used to obtain the SCRDc, QJJ and/or
QJK matrices. In this path, a loop is performed for each interference group. The second record of the
UNM entity is used to determine the number of j-s.t and k-set degrees of freedom in the current
interference group. These are used to generate the PI.TJ partitioning vector for the AJJ matrix. This
vector acts as a floatingNJG-sized vector to extract the 14JG columns and rows associated with the current
group. The AJJT matrix is then partitioned, transposed and decomposed to form AJJG. If the Q= matrix
is needed, the PRTK partitioning vector is also required. This vector is a floating NKG-sized vector to
extract the NKG columns or rows for the current interference group. The DCJK matrix is then partitioned
for the current group and used as follows:

[AJJDCG] = [AJJG] [DCJKG]

The IIMAT utility is then used to merge this matrix into the SCRDC matrix using the interference group
partitioning information. As before, if the QJJ or QJ1 matrices are needed, the AJJG matrix is inverted
and stored as QJJG. The INMAT utility merges this matrix into the QJJ matrix. At the conclusion of the
interference group loop, the SCRDC and QJJ matrices ý.re complete. At this point, the logic recombines
for both paths. If the QKK matrix is needed, the sCRDc matrix is used to compute QKK as:

[QKK] = [SKJ] [SCRDC]

which is then appended onto the list of QWK matrices, QKKL. If the QJK matrix is needed, the QJJ matrix
is used to comput QJX as:

[QJK] [SKJ] [QJJ]

which is then appended onto the list of QJK matrices, QJKL. Finally, the computed QJJ matrix is
appended to the QJJL matrix list if it is required for this m-k/sGRP matrix. The module then continues
with the next m-k/sGRP matrix in the UNW entity. Note that all the matrix lists are formed in the order
the m-k/smRP data appear in the UNWM, although each list need not have all sets. Once the entire set of
mk/SGRP sets in the uNm have been processed, the module terminates by destroying the numerous
scratch matrices used in the computations.

95

Design Requirements: 0
i.¶,Te FUTTM bulk data entries and the CASE relation are used to determine the set of m-k/symznetry
pairs for each aerodynamic matrices required for each divipline. The data on the data base data base
will be used to"6eterminiie the setof matrices to be computed.

Error Conditions:

None

9

96

* Engineering Application Module: APIALINITý

Entry Point: ANINIT

Puruose:-

Initializes the final analysis pass. This module should be called at the beginning of the final analysis
loop to set parameters as needed for that pass.

MAPOL Calling Sequence:

CALL ANALINXT;

Application Calling Sequence:

None

Method:

This module is called to perform any actions needed to transition from the optimization segment of
ASTROS to the analysis segment. Currently, the only action taken by the module is to overwrite the
portion of the SUBTITLE that is used to denote the design iteration number (set in ITERWIIT) with the
label "FIL AMALYSIs SEMbdKN."

Desigrn Requirements:

1. This routine overwrites the characters 88-128 of the SUETIT variable in /OUTPT2/ used by UTPPSU.
No other application modules except or1 should inodify the TITL., SUBTIT, U mL variables beyond
the 72nd character, since these fields are used to set dates, page numbers and subcase information.

V Error Conditions:

None

97

Engineering Application Module: AROSNSDR

Entry Point: AROSDR

Purose:

MAPOL director for saero sensitivity analyses

MAPOL Calling Sequence:
CALL AROSNSDR (NITER, BC, SUB, LOOP, HINDEX, CONST, SYM, NGDR, [PGbRG(BC)],

[£UAG(BC)], [AAG(BC)], ACTEYAG, EUGA], [AGA], EPGA], EPGAU],
PCtA&, [UAGC(BC,SUB)], [AAGC(BC,SUB)], ACTAEFF, [AUAGC],
[AAAGC], PCAE);

NITZ9. Current iteration number. (Input, Integer)

BC Current boundary condition number. (Input, Integer)

suB Current static aeroelastic subscript number. (Input, Integer)

LOOP A logical flag set to indicate whether additional M=I=X subscripts are
needed to complete the processing of all the active Mach number/Symme-
try conditions on all the TRIm entries. One pass for each unique active
Mach number will be performed with aNrDzx set as appropriate for the
active pass until this routine returns LoWP1flLsz. (Logical, Output)

i 1MEX Mach number index value of the current pass. (Output, Integer)

CONST Relation of design constraints. (Input)

Sn Symmetry flag for the current pass. Either 1 for symmetric or -1 for anti-
symmetric. (Output, Integer)

NGDR Denotes dynamic reduction in the boundary condition.
O o No GDR

- -1 GDR is used
(Input, Integer)

[P(DRG (BC)] A partitioning vector that removes the additional GDR scalar points from
the g-set sized displacement and acceleration vectors. Required only if
NGDR * 0. (Input)

[UAG (BC)] g-set displacement vector for all static aero subcases in the current bound-
ary condition. (Input)

[•A,4 (BC)] g-set acceleration vector for all static aero subcases in the current bound-
ary condition. (Input)

ACTUAG Logical flag that is set to 7RUE if there are any active constraints that re-
quire the displacements or accelerations. Those constraints are trim pa-
rameters, stresses, strains and displacements. (Output, Logical)

EuGA] Reduced g-set active displacement vectors for all static aero subcases that
have active trim parameter, stress, strain and/or displacement con-
straints. This is a subset of the columns of .JAG (BC) 1 and does not in-
clude the GDR scalar points, if any (Output)

98

[AGA] Reduced g-set active a•cieleration vectors for all static aero subcases that
have active trim parameter, stress, strvin and/or displacement con-
straints. This is a subset of the colum;.-. of rAAG (BC) I and does not in-
clude the GDR scalar points, if any sOutput)

[PGAA] Partitioning vector used to obtain [UGA3 awd (AGA]) 1'rom [UAG (BC)]
and [AAG (BC) i. (Output)

[PGAV] Partitioning vector relative to [uAG (.c) J and [A.A (BC) I that marks
the displacement/acceleration columns z,,sociated wxith subcases having
active stress, strain or displacement eoxstraints T"vis -vector will be iden-
tical to [PGM] unless there are subcases in which DC-014TEM constraints
are active and no stress, strain or displacenenim cons1t•aints are active.
(Output)

PChA An unstructured entity with one word for each active stress, atrain or dis-
placement constraint in the current subscript related subcases. That
word is the subcase id associated with the constraint. (Output)

EUAGC (BC, SUB)] g-set pseudodisplacement vectors (displacement fields due to lo1,1 ar'is.
ing from unit values of trim configuration parameters) for all aeroelastic
effectiveness constraints. ('nput)

[AAGC (BC, SUB)] g-set pseudoacceleration vectors (accelerat.ion fields due 'o loads arising
from unit values of trim configuration parameters) for all aeroelastic effec-
tiveness constraints. (Input)

ACTRAFF Logical flag that is set to mTR if there are any active constraints that re-
qui-e the pseudodisplacements or pseudcaccelerations. Those constraints
are DCONA.LE, DCONCL, and UCONSCF. (Output, Logical)

EAUAGC] Reduced g-set active pseudodisplacement vectovs for all active effective-
ness constraints. This is a subset of the columns of [uAGC (BC)] and does
not include the GDR scalar points, if any (Output)

[EAAGC) Reduced g-set active pseudoacceleration vectors for all active effective-
ness co-istraints. This is a subset of the columns of [AAGC (BC)] and does
not include the GDR scalar points, if any (Output)

PcAE An unstructured entity with one word for each active effectiveness con-
straint (DCONALE, DCONCLA, DCONSCF) in the current subscript's related
subcases. That word is the column id of the first column associated with
the constraint. (Output)

6p: Acation Calling Seguence:

None

Method:

This module treats two distinct families of aeroelastic constraints for the current beundary condition
and subscript number: the active aeroelastic effectiveness constraints DCONALB, DCOuC.A and DCONSCF;
and the active displacement dependent constraints DCONTW. DCONDSP, stress and strain. Two parallel
sets of partitioning operations take place to extract the active pseudodisplacements needed for effective-
ness constraints and active displacements needed for the displacement-dependent constraints. The
control information for the presence or absence of each type of constraint and the additional control
infermation to extract data from downstream entities is also prepared for each constraint family. Finally,

99

the need to loop through another subscript value is determined and the LooP variable is output, LOOP
will be false a4fer the last needed ;AOSNiSDR call for the turrer~t BC.

First CASE is queried to obtain the Tans identificatiorn number and symmetry. Then Tnur is read to
obtain the subscript numbers, n4DEX values and subcase ids for each SAwMO subcase in the current BC.
These data are then assembled into a mast-r table containing the trim identification number, the
subscript number and the subease id.

The CONST relation is then read to count the number of active stress, strain, displacement, aileron
effective-ness, lift effectiveness, stability coefficient and trim parameter constraints. A loop over each
CONST entry i• •,the..n madc• t assemble the partitionrtng vectors and control information for sensitivity
computat-ns. Each family of constraints is treated separately.

For effectiveness constraints, the DISPCOL attributE in CONST is used to build a partitioning vector for
the active pseudodisplacements and accelerations. The partitioning vector is later destroyed but the
active column numbers are stored as a contiguous string of numbers and written to PC.0. For lift
effeciveness constraints there is one U.AGC/AAGC column for each applied constraint: the disp/accel due
to a unit angle of attack. For aileron effectiveness, there are two columns: the first due to unit contrzl
surface deflection and the seccnd due to unit roll rate. For stability coefficients, there is one column due
to a unit deflection of the constrained parameter. As the constraints are looped over, only those with the
current subscript value are considered. Those will lower subscript values have already been processed
and, if any active constraints are found with a higher subscript value, the LOOP flag is set to TRUE to
ensure another pass is done.

A similar path exists for the displacement-dependent constraints except the matrices being partitioned
are the actual displacement and acceleration fields. Separate partitioning vectors are assembled for 1)
active columns due to all displacement dependunt constraints (PaGAA) and 2) active columns due to stress,
stWain and displacement constraints 'PGuA). Again, previously processed subscripts are ignored and
LOOP is set to true of larger subscripts are encountered.

Finally, tht asse-hIed partitioning vectors are written to their respective entities and the PCE and
PCAA entities are determined from the partitioning data and written to the unstructured entities. The
presence of active constraints in the effectiveness family or displacement-dependent family is then
known and the ACTAEFF and ACTUAG flags, respectively, are set.

Design Requirements:

None

Error Conditions:

None

100

Engineering Application Module: AROSNSMR

_Etry Point: AROSMR

Merges the static aero sensitivities for each subscript (stored in the matrix (MATSUB]) intn the [(3ATOUT]
matrix in case order for active subcases rather than subscript order for the current active boundary
condition.

MAPOL Calling Sequence:
CALL SNSMR (BC, SOB, TDV, [PeAK], [PGAU), (MATOUT], [MATSUB]);

BC Current boundary condition number. (Input, Integer)

SUB Current static aeroelastic subscript number. (Input, Integer)

ZDV Number of design variables. (Input,Integer)

[PG•A] Partitioning vector used denoting active displacement fields for the cur-
rent boundary's static aeroelastic subcases. (Input)

[PGAUJ Partitioning vector used denoting active displacement fields that are ac-
tive due only to stress, strain and displacement constraints for the cur-
rent boundary's static aeroelastic subcases. (Input)

[MATOL'.] On input, MA~ ouT must contain the merged, reordered displacement or ac-
celeration sensitivities for aL &.q subcases processed for the earlier sub-
script values. On output the suB'th subscript is included. Thie_ matrix will
contain one column for each active vector for the 1st design variabie, fol-
lowed by another set for the second and ao on. The order of the vectors
within each variable's set will be the order of the SAERo subcases in the
CASE relation. (Input and Output)

[(1ATSUB] The input matrix of displacement or acceleration sensitivities for all the
subcases processed for the suB'th subscript. This matrix will contain one
column for each active vector associated with the suB'th subscript for the
1st design variable, followed by another set for the second and so on. The
order of the vectors within each variable's set. will be the order of the
TT3X ids appearing in the =n4 relation associated with the S17'th sub-
script value. (Input)

Aplication Ca.ling Sequence"

None

Method:

First the CAS,- relation is read to retrieve the trim id's for the sAEno subcases in the current boundary
condition. The .te Tlmi relation i. read to obtain the subcase numbers associated with each trim id
having the curmnt sUBscript value. Then the PSeA and PGUA vectors are read into memory to assist in
the partitioning operation.

Then the MATSUB and mATOT matrices are opened. If mTOUT is uninitialized OR if SUB = 1, it is
initialized (flushed and the number of rows, precision and form set to those ofM&TSUB. IfMATWT already
exists and has data in it, a scratch matrix is created to hold the final merged data.

191

For each design variable in the model, each sMMo CASE entry for the current boundary is processed.
For each CAME entry, the partitioning vector PwA is used to determine if it ip active and therefore ~ay
have a column in either mATSUB or 5(TOUT. For the active subcase id, the TRiM data are searched to
determine the subscript number associated with the subcase. If the oubscript is less than SUB, a column
from rATOUT may be taken (if it was stored there on an earlier pass). If the subscript is equal to SuB, it
may be stored on the output matrix from MALTSUB. If greater than sun, it is ignored till later passes.

Once a column is identified as active inmATSUB (PG.cA indicates active and subscript = SUB), an additional
check is made to see if the column is active in PGA. Only those coiumns that are active in PGUA are
copied to MAToUT. This filtering is done to limit the amount of computational effort in the stress, strain
and displacement constraint sensitivity computations that proceed using the mATouT matrix. The
MATSUB columns that are active due to DCONTM constraints are no longer needed as these sensitivities
are assumed to have been computed already in the AEROSENS module.

Once the final matrix is formed, if AToUT had had data in it, the name of the scratch matrix that was
loaded is switched with that of MATOutT. The scratch entity is then destroyed.

Desiga.Requirements:

1. The assumption is that each MATSUB matrix contains the results from the "Su3"th subscript value in
the order the trim id's for that SUB appear in the TRIM relation.

2. The same MATOUT matrix must be passed into the AwOSNmR niodule on each call since the columns
associated with earlier subscript values are read from MATOUT into a scrat.h entity. The merged matrix
that results is then replaces the input MATOUT.

3. The AMOsE•s module is called upstream of the AROsNsm module to process active DCONTM
constraints for the current subscript. Thus, those columns that are active only for DCOWTM constraints
may be fil+tred out for the downstream processing of stress, strain and displacement constraints.

Error Conditions:

None

102

Engineering Application Module: BCBGPDT

Ent orjt. BCBGPD

Builds the boundary condition-dependent grid point coordirate relation bgpdt for the specified b.undary

condition.

MAPOL Ca ij2 u -e:
CALL BCEGPDT (BC GSIZEB , WIPDT(BC) , ESIZE(BC));

ac Boundary condition number. (Integer, Input)

GSIZEB Basic g-set size (the size independent of enn-added scalar points).
(Integer, Input)

BGPDT (BC) Relation of basic grid poin-t data for the boundary condition (including
any extra points but excluding GDR scalar points which may be added by
the GMyrt module). (Output)

ESIZE (1C) Number of extra point DOF defined for the boundary condition.
(Integer, Output)

Application Calling Sequence:

None

Method:

The invarient basic grid point data is read from the BGPDT relation (an unsubscripted relation that is
formed in IFP). The user's extra points selected in the CASE relation are then appended in memory and
sorted on external id. Uniqueness of the external id's are checked and the new BGPDT (BC) is Written.

Design Requirements:

1. The invariant BGPDT must exist on the data base. It is a hidden output from the TUP module.

Error Conditions:

1. Nonunique GPID/EPOIM id's are flagged.

103

xAM,

Eningineerng Application Modul: BCawma

ErALky Point: BCBTJLK

Builds boundary condition-depehdeit enrio-s. transfar functions, and i•ijtel conditions

Sd B~bn�dar cohddtion ident34 lcaion number. (Uitegr, Input)

Psra (3C) The size ofthe physical set ior the •-,mns boundary condition- (integer, Input)

SGMT (WC) The, plation of bagei pd poinat data for the aurrent lC (a.ncluding any se-

t~42' (ac [~; -~ 1~L.' M 1nty of DQ'F mask,.- fot all the points in the coxrent,
boundy-otiditiois. (Input)

Aplication Colling Scuence'

Method:

All the outputs from this routine are hidd.en - mearning that they do not appear in the call. 1he purpose
of this module is to assemble those dAta that depend an the boundary coMition selection of ezxta points.

For the data of each type that is reforencel "In C.sE for the current boundary condition. the data are
retrýeved from the bulk data, relations that were loaded in XVP and are error checed relative to the set
of DOF-thafeomprisw the current-boundary condition, The following hidden entities are output:

BULK DATA SUBROUTINE GENERATE ENTITY

O DLONLY mo...

DI4I MEDM named matrix entities

eachI ICDATA

In each case, these entities contain only those data that relate to the current boundary condition. They will
be replaced in subsequent boundary conditions and/or iterations with the appropriate data on each pass.

Desion Requirements:

None.

Error Conditions:

1. Initial error checking of each bulk data entry type is performed within this module.

104
.. ,•,

* Engineering Application Module: BLASTDRV

Entry Poi2•t BLSDRV

PuMose.

To compute an aircraft's transient response to a nuclear blast.

MAPOL Calling nee ce:

CALL BLASTD!-V (BC, [GERM], [GMI, [GENFA], t=QL], [DELB], [URDB],
[DWNW88, [SLPHOD], [ELMS], UBLAST]);

BC Boundary condition ID (Integer, Input)

[GEIM] Generalized mass matrix (Input)

[GEIK] Generalized stiffness matrix (Input)

[GENFA] Mode on box generalized forces (Input)

[GML;Q] Mode on box aeroelastic corrections (Input)

(DELB] Trim vector of initial conditions (Input)

[EURDE] Vector of initial accelerations (Input)

[DWNSE] Matrix of downwash vectors for unit angle of attack and elevator (Input)

[SLPMOD] Matrix of slopes at box centers due to structural modes (Input)

E[EAS] Matrix oftinitial modal displacements (Input)

[UBLASTI] Matrix of blast reaponse vectors. For each time step, dispiacement, veloc-
ity and acceleration vectors are stored (Output)

Application Calling Sequence:

None

Method:

The module obtains solution control information from the CASE relation, the reference chord from aero
and blast parameters from BLAST. GEXF, GMNQL, DWIqWSK, SLmOD and aerodynamic geometry data
are read into core. Initial conditions are set up and a call to subroutine AST6AS/D initializes the blast
calculation. The TSTEP data are then read in and a call to XBLSTS/D calculates the blast intercept time.
Initial response vectors are written to the UBLASTI matrix and a call to subroutine BLvzLS/D calculates
the downwash at the aerodynamic boxes and a call to AST6AS/D gets the initial load. A loop on the time
steps ; then begun. A Newmark-Beta algorithm is applied to calculate the transient response. Within
the time loop, calls to BLVELS/D and AST6AS/D determine the downwash vector and the response,
respectively. Data are written to UBWASTI as specified by the TSTEP input. Once all the time steps have
been computed, scratch entities are destroyed and control is returned to the executive.

0
105

Design Requirements:

I1. This module must come afser B rsTFIT and BEISTTmk The module is called in both the optimizeand the analyze phase of the 'MAPOL sequence, but produces no constraint information for the
optimization task.

Error Conditions:

None

1

106

* Engineering Application Module: BLASTFIT

Entry Point: INTRF

Purpose:

To compute the interpolated time domain steady state and time dependent aerodynamic influence
coefficients for blast analyses based on unsteady aerodynamics computed in the time domain.

MAPOL Calling Sequence:

CALL BLUASTMT (BC, [QJJL], [MATTR], [MATSS], BQDP, [BFRC], [DWNWSH],
HSIZE (BC), [7D2], KPART], [UGTXA], [BLGTJA], [BLSTJA]);

BC Boundary condition ID (Integer, Input)

[QJJL] Aerodynamic influence coefficient matrices in the frequency domain
(input)

[(MTTR] Aerodynamic influence coefficient matrix list in the time domain (Output)

[MATSS] Steady stat aerodynamic infauence coefficient matrix (Output)

BQDP Blast dynamic pressure (Real, Output)

[BFRC] Matrix of aerodynamic forces due to specified rigid body motions (Output)

EDWIWSE] Matrix of downwash components due to specified rigid body motions
(Output)

0 HSIZE (3C) Number of normal modes to be used in the analysis (Integer, Output)

[ID2] An identity matrix required for performing trim analysis in the MAPOL
sequence (Output)

[WPAIRT] A partitioning vector required for performing trim analysis in the
MAPOL sequence (Output)

[UGTKA] Unsteady spline matrix (Input)

EBLGTJA] Spline matrix for transforming blast forces (Output)

[BLSTJA] Spline matrix for transforming displacements and slopes (Output)

AnllicationCallin Sequence:

None

Method:

Problem parameters are first obtaintA from the CASE, 1RE and BLAST entities. A call to AToS
dete-mnines the dynanmic pressure for the specified flight condition. Alist of reduced frequencies that are
available for the specified Mach number is retrieved. A grand loop on the number of sending boxes is
begu'n with a call to DLInDX to determine the geometry of the sending box. A secondary loop on the
receiving bcx sts rts with a call tD IW.D to extract tLe QJJL coefficients for the receiving and sending
bo.vze for all the ,educed frequencies. These data are then processed using the algorithm described in
A4pendix B of the Theoretical Manual to compute -ime domain coefficients. Once all the receiving boxes
have been e-rnnputed, a rolumn of 1iTSO ýs written and NBMTA columns are written to scratch matrix
=LsscP Onýe the loop on sending boxes hns been completed, the eBLSSCR data are retrieved in the o.der
that the-. ati- recuired in -*.I-L and this output matix is written. Acall to BLSFRS/D computes matrices

107

required in the trim analysis. Downwash vectors for given aircraft parameters (such as angle of attack)
are computed and stored to Dwswsa. Premultiplication of the downwash vector by the •TSS matrix
computes the forces due to the aircraft parameters and these data are stored in BLSFRS/D. Matrices
1D2 and MPART are created and the uGTRA matrix is partitioned into BLGTJA and SLSTJA. Control is
then returned to the driver subroutine and then to the executive.

Design Requirements:

1. Must follow the Am module. It it is convenient to group this module with the sLSTTPRim and
13WTDRV modules since they rely on ESTFIT outputs.

Error Conditions:

None

I1

108

Engineering Application Module: BLASTRIM

Entry Point: BLSTRM

Purpose:

Performs a trim analysis prior to performing a transient response to a nuclear blast.
MAPOL Calling Sequence:

CALL BLaPSTRIM (BC, [DELIM], [MRR(BC)], [URDB], [DELBI);

BC Current boundary condition ID (Integer, Input)

[DELH] Matrix of applied loads (Input)

DMIR (BC)] Reduced mass matrix (Input)

[URDB] Matrix of aircraft accelerations (Output)

[DELB] Matrix of trim parameters (Output)

Application Calling Sequence:

None

Method:

The DEIM and MRR matrices are read into core, the BLAST identification number is retrieved from the
CASE entity and the corresponding blast parameters are read from the BLAST entity. The trim equations
are then solved and the acceleration and trim vectors are written to URDB and DELE, respectively.

Design Requirements:

None

Error Conditions:

None

0
109

Engineering Application Module: BOUND

Entry Point: BOUND

Purose:

To return flags to the MAPOL sequence that define the matrix reduction path for the current boundary
condition.

MAPOL Callin Sequence:

CULL BOUND (BC, GSIZE, ESIZE(BC), USET(BC), BLOAD, BMASS, DUODES, BMODES,
BSARRO, BFLUTR, BDYN, BDRSP, BDTR, MM, BDFRR, BER, BGUST,
BBELST, NMPC, NSPC, NCUIT, NRSET, NGDR);

BC Boundary condition number (Integer ,Input)

GSIZE The number of degrees of freedom in the structural set (Integer, Input)

ESIZE (BC) The number of extra point degrees of freedom in the boundary condition
(Integer, Input)

USET (BC) The unstructured entity defining structural sets (Character, Input)

HL= Static load flag; -1 if any static loads in the current boundary condition
(Integer, Output)

fiQss Mass matrix flag; -1 if the mass matrix is needed for any discipline(s) in
the current boundary condition (Integer, Output)

DMODES Modes discipline flag-, -1 if any modal dynamic response discipline(s)
(Integer, Output)

mioiES Modal analysis flag-, =1 if any disciplines in the current boundary condi-
tion require that a real eigenanalyeis be performed (Integer, Output)

BSA=BO Static aeroelastic flag, -3. if any static aeroelastic analyses are in the cur-
rent boundary condition (Integer, Output)

BFLUTR Flutter discipline flag; =I if any flutter analyses in the current boundary
condition (Integer, Output)

BDYN Dynamics flag-, -I if any disciplines requiring dynamic matrix assembly
are in the current bjoundary condition (Integer, Output)

BDRSP Dynamic response flag-, -1 if any transient or frequency response analy-
ses in the current boundary condition (Integer, Output)

BDTR Direct Transient Response flag-, -1 if any direct transient response analy-
ses are in the current boundary condition (Integer, Output)

BUM Modal Transient Response flag-, -1 if any modal transient responsea analy-
ses are in the current boundary condition (Integer, Output)

DRg Direct Frequency Response flag; -2 if any direct frequency response
analyses are in the current boundary condition (Integer, Output)

M Modal Frequency Response flag; =1 if any modal frequency response
analyses are in the current boundary condition (Integer, Output)

BOUST Gust option flag; -I if any dynamic response disciplines include the GUST
option in the current boundary condition (Integer, Output)

110

BBLAST Blast discipline flag; -l if any blast analyses are in the current boundary
condition (Integer, Output)

100C Number of degrees of freedom in the m-set, (Integer, Output)

NSPC Number of degrees of freedom in the s-set, (Integer, Output)

NOtIT Number of degrees of freedom in the o-set, (Integer, Output)

"RSET Number of degrees of freedom in the r-set, (Integer, Output)

NGDR Denotes dynamic reduction in the boundary condition.
= o No GDR
= -1 GR is used
(Input, Integer)

Application Calling Sequence:

None

Method:

The USET entity and CASE relation are read to determine the sizes of the dependent structural sets and
to ensure that no illegal combinations of disciplines and matrix reduction methods reside in the same
boundary condition. The matrix reductions and analysis steps in the standard MAPOL sequence are
then guided by the flags from BOMM. A summary of the structural sets is printed to the output file
followed by a summary of the disciplines and subcases that have been selected..~ Design Requirements:

1. The CASE relation must be filled with the information from the Solution Control Packet by the
SOLUTION module. Also, the MUSET module must have loaded the USET entity.

Error Conditions:

None

Ili

Engineering Application Module: DCEVAL

Entry Point: DCE VAt,

Purpose:

To evaluate displacement constraints in the current boundary condition.

MAPOL Calling Sequence:

CALL DCEVAL (NITER, BC, [UG(BC)], CONST, BSAERO);

NITER Design iteration number (Integer, Input)

BC Boundary condition ID (Integer, Input)

LUG (SC) H Matrix of displacement vectors in the g-set for the boundary condition
(Input)

CONST Relation of constraint values (Character, Input)

BSoER0 Static aeroelastic flag;, =1 if this call is associated with static aeroelastic
analyses. (Optional, Integer, Input)

Application Calling Sequence:

None

Method:

The module first determines if there are any DCONST options for a STATIC (BSAERCMO) or SAERO
(ESAERo=l) discipline for the current boundary condition and terminates if there are none. If there are,
a loop is made through all the subcases for the current boundary condition and the necessary
displacement constraint(s) are calculated and written to the CONST relation.

Design Requirements:

1. This module appears within the analysis portion of the OPTIMIZE segment of the MAPOL sequence.
It is within the analysis boundary condition loop and must follow the recovery of the displacement vector
to the g-set.

Error Conditions:

None

112

Engineering Application Module: DDL07D

Entry Point: DDLOAD

Pqrpose:

Tb compute the sensitilities o€ design dependent loads for active boundary conditions.

MAPOL Calling Sequence:

CALL DDLOAD (NDV, GSIZEB, BC, SMPLOD, DDFLG, [PGAS], [DPVJJ);

NDV The number of global design variables (Integer, Input)

G1"11ZEB The size of the structural set (Integer, Input)

BC The boundary condition identification number (Integer, Input)

SMbLOD Unstructured entity of simple load vector information (Input)

DDFLG Design dependent load flag: (Integer, Output)
= 0 if no design dependent loads
= 1 if any static loads are design dependent

EPGAS] Matrix entity containing a partitioning vector of active applied static load
conditions (Input)

[DPVJ] Matrix entity containing the senstivities of each active static load to the
design variables (Output)

#Aplication Calling Sequence:

None

Method:

The module first determines if there are any static loads and if any of the appl'4d static loads are potentially
design dependent. This is done by reading the SMPLoD entity and checking if aiiy gravity or thermal loads
are defined. If any design dependent applied loads are found, the module continues by reading the
remainder of the first SMPIWD record, the CASE relation for all STATICS disciplines in the current active
boundary condition and all the LMA relational tuples. Finally, the PGA vector is brought into core to
allow the active loads to be identified. Once all the data are in core, the PGA data are used to identify
the active static loads. For each active load, the CASE relation is searched to determine if any of the
simple loads comprising the current active load are design dependent. This involves the LOWAD relational
data for MECH loads since the LOAD data may refer to Mv loads which are design dependent. If any
design dependent loads are found, their sensitivities are computed using the DPVRGI and/or DPTEGI
matrix entities of simple load sensitivities. The DPVJ entity is loaded as active design dependent loads
are encountered with care taken that a/ active loads (including design independent loads) are accounted
for in the column dimension of the matrix entity.

113

Design Requirements:

1. This module muet be called to initialize the DDriA flag that is used by the MAPOL sequence to direct
subsequent matrix o-oerations relating to the load sensitivities even if no design dependert loads
exist in the boundary condition.

2. The module assumes that at least one active static applied load exista in the current boundary condition.

Error Conditions:

None

I1

114

Engineering Application Module: DESIGN

EntrPoint: DESIGN

To perform redesign by math programming methods based on the current set of active constraints and
constraint sensitivities.

MAPOL Calling Sequence:

CALL DESIGN (NITER, NDV, APPCNVRG, MOVLIM, CNVRGLIM, CTL, CTLIUN, NUMOPTBC,
GLBDES, CONST, [AMAT], DESHIST);,

NITER Design iteration number (Integer, Input)

NDV The number of design variables (Integer, Input)

APPCNVRG The approximate problem con verge flag (Logical, Output)
= FALSE if not converged
= TRUE if converged in objective function value

MOVLIM Limit on how much a design variable can move for this iteration (Real, Input)

CNVRGLIM Tolerance for indicating approximate problem convergence (Real, Input)

CTL Tolerance for indicating an active constraint (Real, Output)

CTIbUN Tolerance for indicating a violated constraint (Real, Output)

NUMPTBC Number of optimization boundary conditions (Integer, Input)

GLBDES Relation of global design variables (Character, Input)

CONST Relation of constraint values (Character, Input)

[EANT] Matrix of constraint sensitivities (Input)

DESHIST Relation of design iteration information (Character, Output)

Application Calling Sequence:

None

Method:

The module fi.-t brings design variable, objective, constraint, objective sensitivity and constraint
sensitivity information into core. Calls to ADS then invoke the mathmatical programming algorithm
which performs the redesign task. Function evaluations and gradient evaluations that are required as
part of the math programming task are performed by subroutines FEVAL and GMEVAL, respectively. Once
the appoximate optimizaton process is complete, the GLBDES relation is updated with the new values of
the design variables and a new entry is written to the DESHIST relation.

Design Requirements:

1. This module is called after all the analysis and gradient information has been computed for a design
iteration. It is therefore the last module within the design iteration loop.

Error Conditions:

1. The module does not have sufficient in-core memory available.

115

Engineering Application Module: DESPUNCH

Entry Point: DESPCH

Purpose:

Punchs out the new Bulk Data cards with property values representing the current design model. The
activation of this module depends on the PUNCH input.

MAPOL Calling Sequence:

CALL DESPUNCH (NITER, PUNCH, OLOCALDV

NITER Current design iteration number. (Integer, Input)

PUNCH Logical flag indicating that the user has requested the new model be
punched. (Logical, Input)

OLOCALMV Relation of current local design variable values. (Input)

Application Calling Sequence:

None

Method:

This module works in conjunction with the IFP module and the ACTCON module. I'P stores the design
invariant bulk data and the design variant bulk data is a series of data base entities that are read here.
The ACTCON module actually computes the current local design variable values and loads them in the
OLOCALDV relation. It also sets the PUNCH logical flag if punched output has been requested for the
current design iteration.

If the PUNCH flag is true, the data in the OLOCALDV relation are looped over and the new property and/or
connectivity bulk data entries are punched to the ASTROS punch file.

Design Requirements:

1. IFP must have been called to store the bulk data deck for punch requests.

2. ACTCON must have been called during the current iteration to load the OLOCALDV relation.

Error Conditions:

None

116

, Engineering Application Module: DMA

Entr Point: DMA

Purpose:

7b assemble the direct and/or modal stiffness, mass and/or damping matrices including extra point
degrees of freedom for transient, frequency and blast disciplines.

MAPOL Calling Sequence:

CALL DMA (NITER, BC, ESIZE(BC), PSIZEEBC), BGPDT(BC), USET(BC), [MAI],
[KAA], [THN (BC)], [GSUBO(BC)], NGDR, LAMBDA, [PHIAl, [NDD], [BDD]
[KDDT], [KDDF], [MHE], [BEIE], [KEETJ, TKE]) ;

NITER Design iteration number (Integer, Input)

BC Boundary condition identification number (Integer, Input)

ESIZE (BC) The number of extra point degrees of freedom in the boundary condition
(Integer, Input)

PSIZE (BC) The size of the physical set for the current boundary condition.
(Integer, Input)

BGPDT (BC) Relation of basic grid point coordinate data (Character, Input)

USET (BC) The unstructured entity defining structural sets (Character, Input)

O[MAA] Matrix entity containing the mass matrix in the analysis set (Input)

[FAA] Matrix entity containing the stiffness matrix in the analysis set (Input)

[[TN (BC)] Transformation matrix for multipoint constraints (Input)

[GSUBO (BC)] Transformation matrix for reduction to the analysis set (Input)

NCDR Denotes dynamic reduction in the boundary condition.
=0 No GDR
= -1 GD is used
(Input, Integer)

UMBDAL Relational entity containing the output from the real eigenanalysis
(Input)

[PHIA] Matrix of eigenvectors from the real eigenanalysis in the analysis set (In-

put)

[MDD] Direct dynamic mass matrix (Output)

[BDDI Direct dynamic damping matrix (Output)

[XDDT] Direct transient stiffness matrix (Output)

[KDDF] Direct frequency stiffness matrix (Output)

IMMI Modal dynamic mass matrix (Output)

[BES] Modal dynamic damping matrix (Output)

[KEST] Modal transient stiffness matrix (Output)

117

REEF] Modal frequency/flutter stiffness matrix (Output)

Application Calling Sequence:

None

Method:

The module begins by retrieving all the casE tulles for TEASIWT, FmQUENCY or BLAST disciplines
for the current boundary condition. If any dynamic matrix assembly is required, the BGPDT data is also
retrieved and the number of extra points in the current boundary condition is determined and the PSIZE
variable set to be the size of the physical set. Continuing with the module initialization, the IIAPC

submodule is called to generate all the partitioning vectors for the dynamic degrees of freedom including
the extra points. If there are extra points, the module proceeds to expand the analysis set structural
matrices, mode shapes and transformation matrices to include the extra point degrees of freedom. This
is done in the Dmax submodule.

Next, the mom submodule is called to assemble any direct matrix input. These include b2PP, B2PP
and K2PP inputs as well as transfer function data. The DmaWx2 submodule forms the zeroth, first and
second order inputs in the direct dynamic degrees of freedom. The modal form is obtained during the
actual dynamic matrix assembly.

The module then proceeds to obtain the information needed to assemble the damping matrix. The
DAMPING attribute of the CAsz relation is checked and the vsDMw and TAEmP entries are searched for
a matching identification number. Logical flags are set to indicate that damping, modal damping and/or
direct damping are to be used. If modal damping is selected, the LA•DA relation is read to obtain the
natural frequencies for the computed modes. As a final initialization task, the Mo. module prepares the
data needed to generate the d-sized hidden matrix entity IacmATIX used to perform direct transient
analysis. The ICDATA information is brought iato open core and the psized scratch matrix to be reduced
to icmATRix is created.

Once these initialization tasks have been completed, the loop to form the direct and/or modal dynamic
matrices begins. The CASE relation tuples for the dynamic disciplines are searched sequentially and the
requisite matrices formed. Note that the restrictions in the definition of a boundary condition make it
such that only one form of each matrix is possible. The DM module forms up to eight matrices: (MDD],
[EDO], RODDF], (MEIN, (BEE], [KDDT], [(RMFI, and MIMET]

depending on the requested disciplines and discipline options. The inFO arrays for the matrices are used
to store flags denoting coupled or uncoupled matrices and the form of the damping used in the modal
stiffness and/or damping nmatrices. When all the CASE tuples have been searched and the required
dynamic matrices formed, the module begins the cleanup. The first task is to complete the generation
of the initial conditions matrix by reducing the scratch p-sized matrix to the direct dynamic set.
Following this action, the other scratch matrices used in the module are destroyed and control returned
to the executive.

Design Requirements:

1. The PFBUI- and modules must have been called to perform the preprocessing for the initial
conditions, transfer functions, and direct matrix input.

Error Conditions:

None

118

* Engineering Application Module: DYNLOAD

Entry Point: DYNLOD

Purpose:

lb assemble the direct and/or modal time and/or frequency dependent loads including extra point degrees
of freedom for dynamic response disciplines.

MAPOL Calling Sequence:

CALL DYNLOAD (NITER, BC, GSIZE, ESIZE(BC), PSIZE(BC), SMPLOD, BGPDT(BC),
USET(BC), TbdN(BC)], [GSUBO(BC)], NGDR, [PHIA], [QHJL], [PDT],
EPDF], [PTGLOAD], [PTHLOAD], [PFGLOAD], [PFHLOAD]);

NITER Design iteration number (Integer, Input)

BC Current boundary condition number (Integer, Input)

GSIZE Length of the g-set vector (Integer, Input)

SIZEW (BC) The number of extra point degrees of freedom in the boundary condition
(Integer, Input)

PSIZE (BC) The size of the physical set for the current boundary condition.
(Integer, Input)

SMPLOD Unstructured entity of simple load vector information (Input)

BGPDT (BC) Relation of basic grid point coordinate data (Input)

USET (BC) The unstructured entity defining structural sets (Input)

[T (BC)] Matrix for reducing mPCs (Input)

[GSUBO (BC)] Matrix for reducing omitted DOF (Input)

NGDR Denotes dynamic reduction in the boundary condition.
=0 No GR
= -1 GDR is used
(Input, Integer)

[PHIA] Natural modes matrix in the a-set (Input)

EQHJL] Aerodynamic matrix for gust (Input)

[PDT] Dynamic load vector for transient analysis (Input)

[PDF] Dynamic load vector for frequency analysis (Input)

EPTGLOAD] Applied load matrix for the time dependent loads when LOAD print is re-
quested (Character, Output)

[PTHLOAD] Applied load matrix for the time dependent loads when MODAL w3T print
is requested (Character, Output)

[P-GLOADI Applied load matrix for the frequency dependent loads when LOAD print
is requested (Character, Output)

PFHLOADI] Applied lead matrix for the frequency dependent loads when MDAL GUST

print is requested (Character, Output)

119

Application Callingz Seciggnc:

None

Method:

The module first interrogate3 the. cass relation to see whether any dynamic analyses are to be performed
for the current boundary conditi3n, If not, the module term.niates. ,ror checking is performed to make
sure legal requests have been made and bookkeep-ing is performed to set ulp for matrix reductions and
extra points. Cull(s) are then made tc MaoG to generate the applied loaJs in the p-set. P14APG reduces
these loads to the d-or h-set, depending on the approach. Separate rwutines gen,.ate loads in the
frequency und time domains,

DesignRoarjne

1. Follows computation of quantities in the a-set. If .the1DAL appr•ach is being used, the iatural mode
shapes must be computed.

Error Conditions:

1. No more than orne frequency and/or transient boed it, allowed per boundary condition.

II

i4
!190

Engineering Application Moduie: DymasP

Z~ritrj Point- DYŽRS P

T-b compute the direct or modal displacementb, velocities and accelerations for transient and frequency
earsiyse5.

CAXL .T(, -MEMC, DOD], PBDD], EADD-,., EK1JDFLCA, D ll•g,],

Nurnhar of the current boundary condition (Intager, Input)
xSIZ) (BC) The number of ext'a point degrees of freedom in the boundary condition

(Integer, Input)

DOD] Mass matrix in the d-set (Input)

EWDD Damping matrix in the d-set (Input)

EVDDT] Stifffn.3s matrix in the d-set for transient analyses (Input)

EKDDtF Stiffness matrix in the d-set for frequency analyses (Input)

Medla) mass matrix (Input)

(BEE] Modal damping matrix (Input)

£•ET] Modal ntiffness matrix for transient analyses (Input)

D=mF] Modal stiffness matrix for frequency analyses (Input)

[PDT] Matrix of applied loads for transient analysis (Input)

[PDF] Matrix of applied loads for transient analysis (Input)

Generalized aerodynamic forces for gust analyses (Input)

EUTRA-] Transient response vectors in the a-set (Output)

[u'LUPRQA] Frequency response vectors in the a-set (Output)

Transient response vectors in the i-set (Output)

EUIEQI] Frequency response vectors in the i-set (Output)

[1U' 1 Transient response vectors in the e-set (Output)

117•YRSQ Frequency response vectors in the e-set (Output)
Ap Ication CallingScune

None

121

Method:

The module first interrogates the cASR relation to see whether any dynamic analyses are to be performed
for the current boundary condition. If not, the module terminates. Bookkeeping is performed to set up
for any gust analyses and to process extra points. Aloop on the number of cases with dynamic response
requirements for the current boundary condition is then made. Time or frequency points at which the
response is required are established and the required analyses are performed. Separate subroutines
control the performance of requested analyses:

ROUTINES PURPOSE
TRUNCS/D Uncoupled transient analysis

TRCOUP Coupled transient analyeis
FRUNCS/D Uncoupled frequency analysis

FRCOUP Coupled frequencv analysis
FRGUST Frequency response with gust

These routines fill output vectors with response quantities (displacement, velocity and acceleration). If
there are extra points, a partitioning operation is performed to segregate extra point data into separate
matrix entities.

Design Regiuirements:

1. Modules m4A and DYNLOA• prepaios matrix quantities that are required for this module. If a gust
analysis is being performed, module QHELGEN must have been processed as well.

Error Conditions:

None

122

* Engineering Application Module: EDR

Entry Point: EDRDRV

purpose:

To compute the stresses, strains, grid point forces and strain energies for elements selected for output
for the particular boundary condition.

MAPOL Calling Sequence:

CALL EDR (NUMOPTBC, BC, NITER, NDV, GSIZE, EOSM4M4R, EODISC, GLBDES,
LOCLVAR, [PTRANS], MUG(BC)], [UAG(BC)] [blug], [UTRANG],
(UFREQG], [PRIG(BC)], [PHIGB(BC)]);

NUMOPTBC Number of optimization boundary conditions (Integer, Input)

BC Boundary condition identification namber (Integer, Input)

NITE!R Iteration number for the current design iteration (Integer, Input)

NDV The number of global design variables (Integer, Input)

OSIZE The size of the structural set (Integer, Input)

RosUMeM Relation containing the summary of elements, design iterations and
boundary conditions for which output is desired (Input)

EODISC Unstructured entity referred to by EOSUOMYI containing the disciplines
for which output is required for each element/iteration/boundary condi-
tion (Input)

GLBDES Relation of global design variables (Character, Input)

LOCLVAR Relation containing the relationship between local variables and global
variables in the design problem (Character, Input)

[PTRANS] The design variable linking matrix (Character, Input)

[UG (BC)] Matrix of global displacements from STATICS analyses (Input)

[UAG (BC)] Matrix of global displacements from sAERO analyses (Input)

[BLUG] Matrix of global displacements/velocities/accelerations for BLAST re-
sponse analyses (Input)

[UTRANG] Matrix of global displacements/velocities/accelerations for TRANSIENT re-
sponse analyses (Input)

(UFREQGI Matrix of global displacements/velocities/accelerations for RQUENCY re-
sponse analyses (Input)

(PRIG (BC)l Matrix of global eigenvectors from real eigenanalysis for MODES analyses
(Input)

(PRIGB (BC)l Matrix of global eigenvectors for BUCKLING analyses (Input)

0

ARPlication Calling Sequence:

None

Method:

The zOSMe y relation is opened and read for the current boundary condition. If any element output
requests exist, processing continues by loading the input matrices associated with the discipline
dependent displacement fields into an character array such that the order in which disciplines are
processed correspond to the order of the matrices. Following this, there is a section of code set aside for
discipline dependent processing. Currently, two tasks are performed:

(1) The number of mode shapes computed in the real eigenanalysis (if one was performed) is determined
by opening the PHIG matrix; and (2) any thermal load set ID's in the CASE relation are replaced by the
record number in GRXDTEP that corresponds to the applied load case.

The initialization tasks continue with a call to the PRZELV uitility to set up for computation of the local
design variables associated with designed elements. The transformation matrices and material proper-
ties are also prepared for fast retrieval by the element routines. The GPEDATA relation is opened for
output and the EODISC data is read into memory At this point, the EODISC record number in the
ZOSUMMhRY data is replaced by the open core pointer where the record begins in memory. With the
initialization complete, the EDR module proceeds to compute the desired element response quantities
for all the "subcases" (considered by EDR to be represented by a single displacement vector) for any or
all disciplines that have been analyzed in the current boundary condition. The computation occurs in
the following three steps:

(1) Determine the set of disciplines and subcases for which any element response quantities are
needed

(2) Rp.d into open core as many displacement vectors (real and/or complex) as will fit

(3) Call element dependent routines to compute the stress, strain strain energy, forces and grid
point forces for each displacement vector

To perform step (1), the EOSumRy data is read for each discipline and the corresponding EODISC data
is used to form a unique list of subcases for each discipline in the current boundary condition. A list of
the form:

NDISC, (DISC TYPE(I) ,NSUBCASE,SUBCASE ID(J) ,J,1,NSUBCASE) ,I-1,NDISC)

These data are sorted by discipline type in the order defined in the /EDRDIS/ common block and by the
subcase "identification numbers" within each discipline. The subcase ID's refer to the column number
in the displacement matrix for the discipline. For statics and modes, these numbers are incremented by
one for each new load condition or eigenvector while transient, frequency and blast results use an
increment of three to accommodate the velocity and accelerations that are stored in the same matrix.
After this in-core list has been formed, it is read to determine which displacement vectors are to be
brought into open core. The module determines the amount of remaining memory and brings as many
displacement vectors into memory as possible. The terms are converted to single precision at this point.
Once all the displacements are in memory, or memory is full, the element dependent routines are called.
Within each element dependent routine, the geometrical portion of the element processing is performed
once followed by a loop over all incore displacements to compute the element response quantities. For
each displacement set, all the element response quantities including grid point forces, stresses, strains,
strain energies and element forces are computed and stored on the EOx=xx element response quantity
relations. Note that the exact quantities requested by the user are not used at this point, but will only
be used to determine which data to print. Once all the elements have been processed, the module loops
back for any remaining displacement vectors and, when all of these are processed, terminates.

124

, Design Requirements:

1. The PFBW_ processing of the element output requests must have been completed and be compatible
with the data currently resident in the cAsE relation.

2. The module may be called when no element output requests exist in the Solution Control.

Error Conditions:

None

125

Engineering Application Module: EMA1

Entry Point: EMA1

Purpose:

'Tb assemble the element stiffnoss and mass matrices (stored in the Kzza and •im entities) into the
design sensitivity matrices DKVi and Dbmr.

MAPOL Calling Sequence:
CALL EMA1 (NDV, GLEDES, DVCT, KELM, MEIM, GMKCT, DKVI, CRO4CT, DWVI);

NDV Number of design variables (IntegerInput)

GLADES Relation of global design variables (Character, Input)
DVCT Relation containing the data required for the assembly of the design sensi-

tivity matrices (Character, Input)
KEIH Unstructured entity containing the element stiffness mat'ri partitions

(Character, Input)
EIrm Unstructured bntity containing the element mass matrix partitions

(Character, Input)
GMCT Relation containing connectivity data for the DKVI sensitivity matrix

(Output)
DKVI Unstructured entity containing the stiffness design sensitivity matrix in

a highly compressed format (Output)
Gb•T Relation containing connectivity data for the MWI sensitivity matrix

(Output)
DWI Unstructured entity containing the mass design sensitivity matrix in a

highly compressed format (Output)

Application Calling Sequence:

None

Method:

The module is executed in two passes; once for stiffness matrices and a second time for mass matrices.
In the first pass, DVCT information is read into core one record at a time. The algorithm is structured to
maximize the amount of processing done on a given design sensitivity matrix (typically all of it) in core.
Spill logic is in place if a matrix cannot be completely held in core. For the assembly, subroutine RQCORi
performs bookkeeping tasks to expedite the assembly and to determine whether spill will be necessary.
Subroutine Assmci. retrieves K.m1 information, performs the actual assembly operations and places the
results into the M4KCT and DmrV entities. When the DVCT data have been exhausted a check is made as
to whether mass assembly is required. If a discipline which requires a mass matrix is included in the
solution control, the mass terms are assembled in the second pass. If there are OPTIMIZE boundary
conditions, this module calculates the sensitivity of the objective to the design variables regardless of
whether the nimz matrices are required. If no mass information is required, control is returned to the
executive and the second pass through the module is not made. For the second pass, MELM data are used
and the DOW attribute is added to the GL .ES entity, if required. The structure of the assembly operation
is otherwise much the same and CbtCT and Dmrf data are computed and stored.

126

. Design Requirements:

1. This assembly operation follows the b ST and EG modules.
2. Since gravity loads require rAM data, it is necessary to perform Em1 prior to calling LODOW. MW
must always be called before EMA2.

Error Conditions:

None

0

0

127

Engineering Application Module: EMA2

Entry Point: EMA.2

To assemble the element stiffness and mass matrix sensitivities (stored in the DKVI and DIW. entities)

into the global stiffness and mass matrices for the current design iteration.

MAPOL Calling Sequence:

CALL dA2 (NITER, NDV, GSIZEB, GLBDES, GMKCT, DKVI, [KIGGI, GMMCT,
DMWI, M1GG]) ;

NITER Design iteration number (Integer, Input)

NDV The number of design variables (Integer, Input)

GSIZEB Length of the g-set vectors (Integer, Input)

GLBWES Relation of global design variables (Character, Input)

MaCT Relation containing connectivity data for the DKVz sensitivity matrix
(Character, Input)

DKVI Unstructured entity containing the stiffness design sensitivity matrix in
a highly compressed format (Character, Input)

(KiGG] Assembled stiffness matrix in the g-set (Output)

GMKCT Relation containing connectivity data for the rA-VI sensitivity matrix
(Character, Input)

DMVI Unstructured entity containing the mass design sensitivity matrix in a
highly compressed format (Character, Input)

[M1GG] Assembled mass matrix in the g-set (Output)

Application Calling Sequence:

None

Method:

The structure of this module resembles that of EMW and is also executed in two passes. In the first pass,
(MCT information is read into core one record at a time. The algorithm is structured to maximize the
number of columns of the global stiffness matrix that are assembled at one time. Spill logic is in place
if all the columns cannot be assembled at once. For the assembly, subroutine RQcoR2 performs
bookkeeping tasks to expedite the assembly and to determine whether spill will be necessary. Subroutine
ASSEM2 retrieves the DKVI information, performs the assembly in core using fbhe current values of the
design variables, and stores the data into Kia. When the %WKCT data have been exhausted a check is
performed as to whether mass assembly is required. Flags were written by B,1 on the INFo array of
the DRVI entity to indicate whether mass assembly is required. If no mass information is required,
control is returned to the executive; if it is, the second pass through the module takes place. For the
second pass, Dmvi and ••CT data are used to generate the HGG matrix. The structure of the assembly
operation is otherwise much the same and the MW matrix is computed and stored.

128

, Design Requirements:

1. For OPTM ZE boundary conditions, EMh2 is the first module called in the iteration loop and precedes
the optimization boundary condition loop. For AzLYZE boundary conditions, the module immediately
precedes the loop on analyze boundary conditions and the XiTxR argument is not required. In both cases,
EMA2 must always follow mmi.

2. NITER must be nonzero for optimization boundary conditions.

Error Conditions:

None

129

Engineering Application Module: EMG

Entry Point: EMG

Purpose:

lb compute the element stiffness, mass, thermal load and stress component sensitivities for all structural
elements.

MAPOL Calling Sequence:

CALL EbG (NDV, GSIZEB, GLBDES, DESLINK, [SMMTl, DVCT, DVSIZE, "ZL-4, NEIM,
TELM, TREF);

NDV The number of design variables (Tnteger, Input)

GSIZEB The size of the structural set (Integer, Input)

GIMDES Relation of global design variables (Character, Input)

DESLINK Relation of design variable connectivity from bMA ST module containing
one record for each global design variable connected to each local vari-
able. (Character, Input)

[SMAT] Matrix entity containing the sensitivity of the stress and strain compo-
nents to the global displacements (Character, Output)

DVCT Relation containing the data required for the assembly of the design sensi-
tivity matrices (Character, Output)

DVSIZE Unstructured entity containing memory allocation information on the
DVCT relation (Character, Output)

KEI4 Unstructured entity containing the element stiffness matrix partitions
(Character, Output)

1.EIM Unstructured entity containing the element mass matrix partitions
(Character, Output)

TEIM Unstructured entity containing the element thermal load partitions
(Character, Output)

TEEF Unstructured entity containing the element reference temperatures
(Character, Output)

.lication Calling Sequence:

None

Method:

The ZG module performs the second phase of the structural element preface operations with theMAKST
module performing the first phase. As a result, these6 two modules are very closely related. The first
action of the EKG module is to determine if design variables and/or thermal loads are defined in the bulk
data. If they are, the special actions for design variable linking and thermal stress corrections are taken
in the element dependent routines. The PREMAT utility to set up the material property data also returns
the scoN logical flag to denote that there are stress constraints defined in the bulk data. The
initialization of the module continues with the retrieval of the mFlM data to select lumped or coupled
mass matrices in the elements that support both forms. The default is lumped although any1VOM/COU-
PLED (even if MFOEM/LUMPED also exists) will cause the coupled form to be used. If thermal loads exist,

130

the module prepares the TEF entity to be written by the element dependent routines. If the DESIGN
logical is set, the SCRDES scratch entity from MAKEST is opened and read into memory. The entity is then
destroyed. The GLDES relation is opened and the design variable identification nu.ibers are read into
memory. Finally, the DVCT entity is opened and flushed and memory is retrieved to be used in the DVCTLD
submodule to load the DVCT relation. The module then calls each element dependent routine in turn.
The urder in which these submodules are called is very important in that it provides an implicit order
for the UMKEST, EMG, SCEVAL, EDR and oip modules. That order is alphabetical by connectivity bulk
data entry and results in the following sequence:

(1) Bar elements

(2) Scalar spring elements

(3) Linear isoparametric hi -,ahedral elements

(4) Quadratic isoparametric hexahedral elements

(5) Cubic isoparametric hexahedral elements

(6) Scalar mass elements

(7) General concentrated mass elements

(8) Rigid body form of the concentrated mass elements

(9) Isoparametric quadrilateral membrane elements

(10) Quadrilateral bending plate elements

(11) Rod elements

(12) Shear panels

(13) Triangular bending plate elements

(14) Triangular membrane elements

Within each element dependent routine, the xzxEST relation for the element is opened and read one
tuple at a time. If the EST relation indicates that the element is designed, the SCRDES data is used to
write one set of tuples to the DVCT relation for each unique design variable linked to the element. The
set of tuples consists of one row for each node to which the element is connected. If the element is not
deslgTied, a single set of tuples is written connected to the "zeroth" (implicit) design variable. The element
dependent geometry processor is then called to generate the KEUL, MELM and TEIm entries for the
element. These data must be generated before the next call to DVCTLD since the DVCT forms the directory
to all three of these entities. Once all the elements are processed within the current element dependent
routinj, the TREF entity is appended with the vector of reference temperatures for the current set of
elements. Again, the order of these reference temperatures are determined by the sequence listed above
and is assumed to hold in other modules. When all the element dependent drivers have been called by
the EY; module driver, clean up operations begin. The entities that have been open for writing by the
element ,?outines are closed, the remaining in-core DVCT tuples are written to the data base and the
DVCT relation is sorted. If there are design variables, the DVCT is sorted on the DVID attribute and,
within each unique DVID, by KSIL. If there are no design variables (all DVID's are zero), the DVCT is
sorted only on KSIL. Finally, if stress or strain constraints were defined in the bulk data stream, the
S14AT matrix of constraint sensitivities to the displacements is closed. SM.T was opened by the REMAT
module when the SCoN constraint flag was set.

131

Desig Requirements:

1. The ioxsT module must have been called prior to the Em module.

Error Conditions:

1. Illegal element geometries and nonexistent material properties are flagged.

1

132

* O Engineering Appliation Module: PCEVAL

En nt-- FCEVAL

Purose:

'Ib evaluate the current vahle of all frequency constraints.

MAPOL Call•nxw eouence:

CALL FCEVAL t N-=T , BC, LAMWND?, CONST);

UISXR Des~gn iteratio' number (Integer, Input)

BC Boundary condition identification number (Integer, Input)

LAMBDA ' .lational a.otity contaiuizg the ortput from the real eigenanalysis
(Input)

CONS!T Relation of design constraint values (Character, Output)

Appiication Calling Scauence:

None

Method:

The FCFJVAL module first determines if any frequency constraints are applied to t-a modal an-ijysis in
the curre-.t boundary copd-ion. If anr; constraints are appl'_,ie to the modal analysis, thc modile proceeds
to open th3 DCON•cFP. relatitn to obtain the appbvd constraints and the waUBDA rehittn to obtai.L ,he
coniputed frequencieE. The final initiaization task is to open the CONST relation to store the computed
frequency conEtraints. The actui computation invnlves loopihy throught, the DCONFW, -elation for the
current ftequercy constraint set and conditioning fite LAMBDA relation to r:ý.rieve the results for tk-e
,nodes that are constrainedL, Having retrievea the mode number ani the computed modal frequency from
L-•IMDA, the applied uppsr or lower' ound constraint is computed and stored cn the COVST -elation.

Design ReQuiremeats:

1. The 3CEVAL modu3G a~surnes that the cu-rent bcundary conditioi is an optimization• borandary
condition.

Error Conditiois:

1. The frequency co.nstraint set re,,renced by Solution Control do3s not exst in the .1%o'Fn4 rtalon,

2. The f'requeney or eigenvector for the corztrained mode was not tuxtracted in the rea eoigenanalycis.

3. The cc-nstraiined mode is a rigid bWdy modi (zero ;reque.-cy) and thereftre caniot be ertraine6.

133

ERgineering Application Module: FLWMTDHA

EnP oint FLTD

As4embles the dynamic matrices for- the flutter disciplines.
MAPOL Calli eueaý:

CA&I FLUTL9 (NITER, BC, h-T23, ESIZEBC), PSIZM(BC), k-GPDT"BC), USZT(BC),
[MA] ,] [E.AA., [W (BC) : [GSiBO (BC)], NDR, -. BDA, MPHIA],

UMEILnBC,SUB)3, [BHB-ELIBC,SUB)], KE wF1(BC,SUB)] 3 .

NITM Design iteraticn number. (Integer, Input)

73C Boundary cndition iiumber, (Integer, Input)

S3VB Flutter subcase numb6r. (Integer, Input)

ESIM (EC) Number of extra points for the current bou:dary condition-. (Integer, In-
put)

Pr-Izz (BEC) Number of physical degrees of freedom in the currnt boundary condi-
tions (GSIZE+ERIZE) (.nteger, input)

BGPDMT iC) Current boundary condition's ioeation (A basic grid point data (expanded
to include sxtra points and any qDR scalar voints) (input)

UMET (Be) Current boundary condition's unstructured -entity of set definition masks
Iexpanded t., include extra points and any GDR scaler points) (Input)

•] MaL.s matrix in the analysis set. (input)

[(A] Stifl-hess matrix in the analysis sot. (input)

[EIW (BC) I Multipoint constraint trandfozmation mnatrix for the current boundaryL_• cond•;tion. (Input)

(4[i*O (BC) St,-.6t. condensation or GDR reduction matrix for the current boundary con-
dition. (Input)

NGrfl Denotes dynami.c reduction in the boundary condition.
=0 NoG DR
, -1 GO is used
(input, Integer)

•:•BDA ReJation of normal m,)de eigenvalues output from the IEmG module.
(Input)

[•-A] Matrix of normal mode eigenvectors in the analysis set output from REIG.
(input)

Er'M L (BC, SUB) I Generalized mass matrix for the current flutter subcase in the h-set
(normal modes+extra points) including any transfer functions and M2PP
input. (Output)

[BW1FL (BC,.SUBB)] Generalized damping matrix for the current flutter subcase in the h-set
(normal modes+extra points) including any transfer functions, B2PP in-
put and VSDAMP input. (Output)

134

EHFL (BC, SUB) J Generalized stiffness matrix for the cur-ent fCtter suC (azjc3 in "ie h-set
(normal modes+extra points) including any transfer fu.ictioi-s K2PP input
and VSDAMP input. (Output)

Application Calling Sequence:

None

Method:

CASE is checked to see if any FLUTTER subcases exist for the current boundary condition. If not, control
is returned to the MAPOL sequence. If FLUTTER subcases exist, the dynamic matrix descriptions for the
current subcase (as indicated by the SUB input) are brought into memory from CASE. Then the BGPDT
data are read into memory and the iPVC submodule is called to generate partitioning matrices to
expand the input matrices to the p-set from the g-set and to strip off the GDR extra points where
appropriate. If extra points are defined, the b A1A, PHIA, n and GSuBO are then expanded to
include the d-set extra point DOF

Following the expansion of the input matrices, the direct matrix input M2PP, B2PP and K2PP are
assembled and reduced to the direct d-set DOF in the submodule m m2. Modal transformations occur
later in the module. Following the x2PP formation, the VSDAMP data are set depending on the DAMPING
selection for the wLU7.'zP. subcase. Finally, the LAMBDA relation is read into memory to have the modal
frequencies available for modal damping computations.

Following all these preparations, the utility submodules DMAM , DMBEM and DXRn are used to
assemble the modal mass, damping and stiffness matrices accounting for all the dynamic matrix options.
Control is then returned to the MAPOL program.

Design Requirements:

1. The FLUMA module is intended to be called once for each FLUTTER subcase in the boundary condition.
The ordering of subcases is that in the CASE relation. Each set of dynamic matrices in the standard
sequence is saved in a doubly subscripted set of matrices to be used in sensitivity analysis. It is not
necessary to save these matrices unless the sensitivity phase will be performed.

Error Conditions:

1. Missing damping sets called for on the FLUTTER entry are flagged.

2. Errors on TABmP entries are flagged.

135

Engineering Application M~odule: FLUTDRV

Entry Point: FLUTDR

Pýurose:

MAPOL director for flutter analyses.

MAPOL Calling Sequence:

CALL FLUTDRV (BC, SUB, LOO)0 ;

BC Boundary condition number. (Integer, Input)

SUB Flutter subcase number (ranging from 1 to the total number of FLUTTER
subcases) of the subcase to be processed in this pass. (Integer, Input)

LOOP Logical flag indicating that, more flutter subcases exist in the boundary
condition. (Logical, Output)

Application Calling Sequence:

None

Method:

The suB'th FLuTTE subcase's TITLE, SUBTITZLE and LAWL are retrieved from the CASZ relation and
set in the /oUTT/ common for downstream page labeling. If more than sub FLuTTER subcases exist,
the Loop flag is set to TRUE to tell the MAPOL sequence that more passes through the flutter analysis
modules are needed.

Design Requirements:

1. This module is the driver for a set of MAPOL modules that together perform the FLUTTER analysis

for a subcase. These modules are FLUTDma, IlUTQRHL and FLUTTRW.

Error Conditions:

None

136

Engineering Application Module: FLUTQHHL

Entry Point: FLTQHH

Purpose:

Processes matrix QKK with normal modes for flutter.

MAPOL Calling Sequence:

CALL FLUTQHRL (NITER, BC, SUB, ESIZE(BC), PSIZE(BC), [QKKL], [UGTKAJ,
EPHIA], USET(BC), [TMN(BC)], [GSUBO(BC)], NGDR, AECOHPU,
GEaKUA, [PHIRK], [QHHLFL(BC,SUB)], OAGRDDSP);

NITER Design iteration number. (Integer, Input)

BC Boundary condition number. (Integer, Input)

SUB Flutter subcase number. (Integer, Input)

ESIZE (BC) Number of extra points for the current boundary condition.
(Integer, Input)

PSIZE (BC) Number of physical degrees of freedom in the current boundary condi-
tions (GSIZE+ESIZE) (Integer, Input)

[QKKL] Matrix containing a list of k x k complex unsteady aerodynamic matrices
for each m-k pair defined by mimmERoi and MKAERO2 entries. These matri-
ces were output from the AMP module. (Input)

[UGTKA] The matrix of splining coefficients relating the aerodynamic pressures to
forces at the structural grids and relating the structural displacements to
the streamwise slopes of the aerodynamic boxes reduced to the a-set DOF
(Input)

EPHIA] Matrix of normal modes eigenvectors in the a-set. (Input)

USET (BC) Current boundary condition's unstructured entity of set definition masks
(expanded to include extra points and any GDR scalar points) (Input)

[TH (BC)] Multipoint constraint transformation matrix fc'r the current boundary
condition. (Input)

EGSUBO (BC)] Static condensation or GDR reduction matrix for the current boundary con-
dition. (Input)

NGDR Denotes dynamic reduction in the boundary condition.
= ONoGUR
= -1 GDR is used
(Input, Integer)

AEC~tPU A relation describing aerodynamic components for the unsteady aerody-
namics model. It is used in splining the aerodynamics to the structural
model. (Input)

GEmWUA A relation describing the aerodynamic boxes for the unsteady aerodynam-
ics model. The location of the box centroid, normal and pitch moment axis
are given. It is used in splining the aerodynamics to the structure and to
map responses back to the aerodynamic boxes. (Input)

137

[PHIKH] A modal tranformation matrix that relates the box-on-box aerodynamic
motions to unit displacements of the generalized structural coordinates
(modes). (Output)

[QEMLFL (BC, SUB) I A matrix containing the list of h x h unsteady aerodynamics matrices for
the current flutter subcase related to the generalized (modal) coordinates
and including control effectiveness (CONEFF), extra points and CONTROL
matrix inputs. (Output)

OAGRDDSP A relation containing the structural eigenvectors (generalized DOF)
mapped to the aerodynamic boxes for those AIRDisP requests in the Solu-
tion Control. These terms are the columns of PHIKn put in relational form
to satisfy the output requests. (Output)

Application Calling Sequence:

None

Method:

The CASE relation is read to obtain the SUB'th flutter subcase parameters: CONTROL and AIRDPRNT.
Then the FLUTTER relation is read for the current subcase and the xLIST and EFFID entries are
recovered.

If there is no CONTROL matrix, PHiA and UGTKA matrices are expanded to include dynamic degrees of
freedom using the utility module Qm3ExP. GDR scalar points are handled to ensure that the final matrices
are in the d-set. If a CONTROL matrix does exist, its existence and conformability is checked. The M MPVC
utility submodule is used to create partitioning vectors and matrix reduction matrices to allow reduction
of the CONTROL matrix to the d-set. The FLCNTR submodule is then called to append the reduced CONTROL
matrix to the expanded UGTKA matrix. The P01KH matrix is then computed as the product of the
expanded PHIA and the expanded and CONTROL-modified UGTrA

[PHIKH] = [PEID]T UGTKD]

Then, if control effectiveness correction factors are selected for the subcase, the PR1KI matrix terms are
adjusted by the input factors. This completes the computation of the PRIKE output matrix. The input
AIRDISP output requests are then processed to load the OA-1MDDSP relation with the generalized
displacements on the unsteady aerodynamic geometry.

Finally, the QKK matrices that are associated with the user's input Mach number and KLIST for the
subcase are reduced to the generalized degrees of freedom using the PHIKE matrix.

i[QEL] = [(PHIMK)]T[QL] [PH1KH]

The premultiplication takes place in one MPYAD and the postmultiplication is done by looping over each
reduced frequency in the set, extracting the k columns of each h x k matrix and performing a separate
MPYAD. The results are then appended onto the output QEEL.

Desig n Requirements:

None

Error Conditions:

1. CONTROL matrix errors in conformability are flagged.

2. CONEFFF errors are flagged.

138

O Engineering Application Module: FLUTSENS

Entry Point: FLTSTY

Purpose:

1b compute the sensitivities of active flutter constraints in the current active boundary condition.

MAPOL Calling Sequence

CALL FLUTSENS (NITER, BC, SUB, LOOP, GSIZEB, NDV, GLBDES, CONST, (MMCT,
D1VI, GMCT, DMWI, CLAMSDA, LAMBDA, [QEHLFL(BC,SUB)],
(3FL (BC, SUB)], [BBHFL(BC,SUB) J, [KHMFL (BC, SUB)],
[PFJ.G(BC)], [AMAT]) ;

NITER Design iteration number (Integer, Input)

BC Boundary condition identification number (Integer, Input)

SUB Flutter subcase number (ranging from 1 to the total number of FLUTTER
subcases) of the subcase to be processed in this pass. (Integer, Input)

LOOP Logical flag indicating that more flutter subcases exist in the boundary
condition. (Logical, Input)

GSIZEB The size of the structural set (Integer, Input)

NDV The number of global design variables (Integer, Input)

GLADES Relation of global design variables (Character, Input)

CONST Relation of constraint values (Character, Input)

.'MCT Relation containing connectivity data for the DMVI sensitivity matrix
(Character, Input)

DMVI Unstructured entity containing the stiffness design sensitivity matrix in
a highly compressed format (Character, Input)

CMMCT Relation containing connectivity data for the DMVI sensitivity matrix
(Character, Input)

DMVI Unstructared entity containing the mass design sensitivity matrix in a
highly compi .-ssed format (Character, Input)

CLANBDA Relation containing results of flutter analyses (Character, Input)

LABDA Relational entity containing the output from the real eigenanalysis
(Character, Input)

[QRHLFL (BC,SUB)] Matrix list of modal unsteady aerodynamic coefficients (Input)

[MHFL (BC, SUB)] Modal mass matrix (Input)

[BHEFL (BC, SUB)] Modal flutter damping matrix (Input)

[MMFL (BC, SUB)] Modal flutter stiffness matrix (Input)

[PRIG (BC)] Matrix of real eigenvectors in the structural set (Input)

[AMAT] Matrix of constraint sensitivities (Output)

139

Application Calling Sequence:

None

Method:

The FLUTSENS module is very similar to the FLUTTIW module except that the CONST and CLAMWA
relations control the execution of the module rather than the CASE relation. The module begins by
retrieving all the active flutter constraints from the CONST relation that are associated with the current
subcase (suB) and determining the CLAZbA tuples that correspond to the active constraints. The next
task of the module is to prepare for the actual flutter sensitivity analysis by setting up the FLFACT bulk
data and the u data using the PREFL and PRaNMm utilities, respectively. The generalized mass and
damping matrices are then read into memory and converted to single precision, followed by the natural
frequencies associated with the computed eigenvectors. Lastly, the generalized stiffness r atrix is read
in and converted to single precision and the generalized aerodynamic influence coefficients are opened
for retrieval. A final operation creates the scratch flutter eigenvector matrices that will be used in the
sensitivity evaluation.

For the rI~uTmrt case, a number of tasks are performed to set up for the current Mach number. These
consist of the retrieval of the set of m-k pairs for the current FLUTTER entry from the umm data and the
set of normal modes that are to be omitted. If modes are omitted, a partitioning vector is created and
used to partition the input PHIG matrix to include only the desired normal modes. As a final step before
the active constraint loop for the current FLUTTER set id, the local memory required by the flutter
analysis submodules is retrieved.

The module continues with the loop on the CLm A tuples associated with the current FLUT=R set
identification number. The scalar parameters identifying the flutter root are retrieved from CLMAMDA
and the set of reduced frequencies associated with the QELL matrices for this flutter case are retrieved
from the Nmo data. The FAiPRI submodule is called with this data to compute the interpolation matrix
for the QHLL matrix list under the ORIG curve fit option. Otherwise, the fitting coefficients are computed
on the fly within the QFDRV family of routines. Then, the subset of the full QHLL matrix associated with
this flutter analysis is read into core and converted to single precision.

At this point, the imaginary part of the QzKH matrix is divided by the reduced frequency. Finally, the
QFDRV utility is called to generate the QRS interpolated aerodynamic influence coefficients for the current
flutter eigenvalue. At the same time the QFDRV module computes the sensitivity of this matrix to the
reduced frequency (DQRS). Finally, the flutter eigenmatrix is computed using the FSUBS submodule. The
corresponding right-hand eigenvector is then computed, the eigenmatrix is transposed and the left-hand
vector computed. At this point, the scalar (complex) sensitivities of the mass, damping, stiffness and
aerodynamics are computed as outlined in Section 10.3 of the Theoretical Manual. The FLUTSENS
module performs all these computations using real arithmetic. Finally, the 2 X 2 left-hand side matrices
of equation 10-27 of the Theoretical Manual:E DF1 1 DF1 2 1 f DR P2R * MR- P2I * MI + KR + daping

DF 21 DF2 2 I I DI P2R * MI - P2I * MR + KI + daming

are stored and the left- and right-hand eigenvectors packed into a scratch entity. The value darp±.ngis"

if structural damping, g, is included.

140

. Simliarly, it is:

PIR * * KR - PlI * -g- * KI

'03 W)3

PR * -E * XI - PII * g * KR
W)3 0)3

if equivalent viscous damping is used at frequency M.

The module then continues with the next active constraint for the current FLUTTER entry. Once all the
active constraints are treated for the current FLUTTER entry, the matrix of left- and right-hand
eigenvectors are expanded to physical coordinates using the (partitioned) normal modes matrix. The
FLCSTY module is then called to complete the solution of the constraint sensitivities to the global design
variables. These computations involve the eigenvectors and the mass, damping stiffness sensitivities to
compute the right-hand side of Equation 10-27 of the Theoretical Manual. Once the FLCSTY module is
complete, the mLuTSENs module proceeds with the next FLUTTER entry with active flutter constraints.
When all have been completed, control is returned to the executive.

Design Requirements:

1. The module assumes that at least one active flutter constraint exists in the current boundary
condition.

Error Conditions:

None

141

Engineering Application Module: FLUTTRAN

Entry Point: FLUTAN

Purose:

Tb perform flutter analyses in the current boundary condition and to evaluate any flutter constraints if
it is an optimization boundary condition with applied flutter constraints.

MAPOL Calling Sequence:

CALL FLUTTRAN (NITER, BC, SUB, [QHHLFL(BC,SUB)], LAMBDA, HSIZE(BC),
ESIZE(BC), [MRHFL(BC,SUB)], [BHHFL(BC,SUB)], [KHHFL(BC,SUB)],
CLAMBDA, CONST);

NITER Design iteration number (Integer, Input)

BC Boundary condition identification number (Integer, Input)

SUB Flutter subcase number (ranging from 1 to the total number of FLUTTER
subcases) of the subcase to be processed in this pass. (Integer, Input)

[QH-LFL (BC, SUB)] Matrix list of modal unsteady aerodynamic coefficients (Input)

LAMBDA Relational entity containing the output from the real eigenanalysis
(Input)

HSIZE (BC) Number of modal dynamic degrees of freedom ir, the current boundary
condition (Input)

ESIZE (BC) The number of extra point degrees of freedom in the boundary condition
(Integer, Input)

[MEMFL (BC, SUB)] Modal mass matrix (Input)

[BRMFL (BC, SUB)] Modal flutter damping matrix (Input)

KmmFL (8C, SUB)] Modal flutter stiffness matrix (Input)

CLAMBDA Relation containing results of flutter analyses (Character, Output)

CONST Relation of constraint values (Character, Input)

Application Calling Sequence:

None

Method:

The FLUTTRA module begins by retrieving the flutter discipline entries from the CASE relation for the
current boundary condition. If the boundary condition is an optimize bounl-vy condition, the CONST
and CLAMDA relations are opened to store the constraint and root extraction data needed for the
optimization task. For analysis boundary conditions, the hidden entities FLUTWOD. and ,LUTREL are
opened and initialized to prepare for possible flutter mode shape storage. These mode shapes are stored
so that the OFPDISP module can satisfy flutter mode shape print requests.

The next task of the module is to prepare for the actual flutter analysis by setting up the FLFACT bulk
data and the UNM data using the PREFL and PRUNW utilities, respectively. Then the reference unsteady
aerodynamic model data is retrieved from the AERO relation. Lastly, the velocity conversion factor, if one
has been defined, is read from the CONVERT relation. The generalized mass and damping matrices are

142

then read into memory and converted to single precision, followed by the natural frequencies associated
with the computed eigenvectors. Lastly, the generalized stiffness matrix is read in and converted to
single precision and the generalized aerodynamic influence coefficients are opened for retrieval. This
completes the preparations for the flutter discipline loop.

For the sU'th flutter discipline requested in the CASE relation, a number of tasks are performed to set
up for the Mach number requested on the FLuTTER entry. These consist of the retrieval of the set of m-k
pairs for the current FLUT=i entry from the umm data and the lists velocities (which are converted to
the proper units, if necessary) and densities. If the boundary condition is an optimization boundary
condition, the table of required damping values is prepared using the PRFcON utility. Lastly, the set of
normal modes that are to be omitted are retrieved and the data prepared to perform the "partitioning"
of the generalized matrices. As a final step before processing the current FLUTTER entry, the local
memory required by the flutter analysis submodules is retrieved.
The subset of m-k pairs in the QHLL matrix list for the current Mach number is determined and the set
of associated reduced frequencies determined. The FA1PKI submodule is called with this data to compute
the interpolation matrix for the QELL matrix list if the cGG curve fit is used. Otherwise, the fitting
coefficients are computed on the fly in the QFDRV module. Then, the subset of the full QHLL matrix
associated with this flutter analysis is read into core and converted to single precision. At this point, the
imaginary part of the QZEM matrix is divided by the reduced frequency. Finally, the Mach number
dependent memory blocks are retrieved and the inner-most analysis loop on the density ratios is begun.

For each density ratio associated with the Mach number for the current flutter analysis discipline, the
FLUTTrAN module performs the flutter analysis. There are two distinct paths through the inner loop:
one for optimization and one for analysis. They differ in that the analysis loop refines the set of user
selected velocities to find a flutter crossing, while the optimization path computes the flutter eigenvalues
only at the user specified velocities and computes the corresponding flutter constraint value based on
the required damping table. Once all the loops have been completed, the module returns control to the
executive.

Design Requirements:

1. The module assumes that at least one flutter subcase exists in the current boundary condition.

Error Conditions:

1. Referenced data on FLUTMR entries that do not exist on the data base are flagged and the execution
is terminated.

143

Engineering Application Module: FEOUCE0

Entry Point: FREDUC

Purose:

1b reduce the symmetric or asymmetric f-set stiffness, mass and/or loads matrix to the a-set if there are
omitted degrees of freedom.

MAPOL Calling Sequence:
CALL FREDUCE ([KIT], [PF], [PFOA(BC) I , SYM, [KO0INV(BC) I, [KOOU(BC)],

[KAO(BC)], [GSUBO(EC)I, [KAA], (PAl, [P0], USET(BC));

(KIF] Optional Stiffness or mass matrix to be reduced (Input)

(PF] Optional loads matrix to be reduced (Input)

[PFOA (BC)] The partitioning vector splitting the free degrees of freedom into the
analysis set and the omitted degrees of freedom (Input)

SYM Optional symmetry flag; =1 if KFF is not symmetric (Integer, Input)

[XooINV (BC)] Matrix containing the inverse of xoo for symmetric stiffness matrices or
the lower triangular factor of KOo for asymmetric matrices (Output)

[Koou (BC)] Optional matrix containing the upper triangular factor of Koo for asym-
metric stiffness matrices (Output)

[KAO (BC)] Optional matrix containing the off-diagonal partition of KFF required for
recovery when 1rU is asymmetric (Output)

(GSUBO (BC)] Matrix containing the static condensation transformation matrix
(Input and Output)

(KAAI The stiffness matrix in the analysis set degrees of freedom (Output)

EPA] The loads matrix in the analysis set degrees of freedom (Output)

(P0] Matrix containing the loads on the omitted degrees of freedom (Output)

USET (BC) The unstructured entity defining structural sets (Character, Input)

Application Calling Sequence:

None

Method:

r MUCE module begins by checking if the "I argument is nonblank. If so, the reduction by static
condensation is performed in one of two ways depending on the sYMflag. If the symflag is zero or omitted
from the calling sequence the following operations are performed:

[K _ KOO KOA]

[KOOINV] [Koo]-' symmetric decomposition

(GSUBO] = - [KOOINV] [KOA] symmetric Forward-Backward Substition

[LKM] = [RZAA] + [KOAl T [GSUBo]

144

The xOOwNV, GSUBO and mAA arguments must be nonblank in the calling sequence. If the SYM flag is

nonzero in the calling sequence the following operations are performed:

C00I•NV] is the Lower triangular factor of [Koo0]

[CROO0 is the Upper triangular factor of [0oo]

[GSUBOJ - - Roo] -1 [xOA asymmetric Forward-Backward Substition

[KrAA = CAAM] + [CAO] [GSUBO]

The KOOxNV, KOOU, KAO, GSUBO and xm arguments must be nonblank in the calling sequence. Note
that rAO is required since the asymmetric nature of K"F prohibits the transpose operation used in the
symmetric case. The module then checks if pr is nonblank. If so, the loads matrix reduction is performed.
Once again, there are two paths depending on the symmetry flag. If sym is zero (symmetric), the following
operations are performed:

[PPI -4 PA}

[SCRI] . [P0]T TGSUB]

[SCR2] = CSCR1]T

CPA] -CPA] + C [SCR2]

With the odd order of operations dictated by efficiency considerations in the matrix operations. Note
that the GSUBO, PA and P0 arguments must be nonblink with the GSUWo argument an input if the
stiffness matrix was not simultaneously reduced. If SYM is nonzero (asymmetric), the following opera-
tions are performed:

[SC~] = [CO00-P CPO] (Asymmetrie .s)

LPA] = CPA] + [KAOj [SCRi]

Note that the wOOINV ROOU, KAO, PA and P0 arguments must be supplied with the KOOINv, XooU,
and KAO arguments input if the (asymmetric) stiffnets matrix is not being reduced in the same ceall.

Design Requirements:

None

Error Conditions:

None

145

Engineering Application Module: FREQSENS

Entr Point: FQCSTY

Purose:

Tb compute the sensitivities of active frequency constraints in the current active boundary condition.

MAPOL Calling Sequence:
CALL FREQSENS (NITER, BC, NDV, GLBDES, CONST, LAMBDA, GMKCT, DKVI, GM4CT,

DMVI, [PHIG(BC)], [AMAT]);

NITER Design iteration number (Integer, Input)

BC The current boundary condition number (Integer, Input)

NDV Number of design variables (Integer, Input)

GLBDES Relation of global design variables (Character, Input)

CONST Relation of constraint values (Character, Input)

LAB•DA Relational entity containing the output from the real eigenanalysis
(Input)

GMKCT Relation containing connectivity data fur the DKVI sensitivity matrix
(Character, Input)

DYIM Unstructured entity containing the stiffness design sensitivity matrix in
a highly compressed format (Character, Input)

•MWCT Relation containing connectivity data for the DMVI sensitivity matrix
(Character, input)

MwI Uinstructured entity containing the mass design sensitivity matrix in a
highly compressed format (Character, Input)

EPRIG (3c) I Matrix of eigenvectors for the current boundary condition (Input)

[AMV] Matrix containing the sensitivities of the constraints to the design vari-
ables (Output)

Application Calling Sezauence:

None

Method.

The module begins by collecting design variable information from GLEDES, frequency constraint
information from CONST and eigenvalue information from LMVDA. Space is reserved for design
sensitivity matrices and then the number of eigenvectors that can be held in core simultaneously is
determined. Spill logic is provided if this number is less than the number of eigenvectors that have
eigenvaiue constraints.The eigenvectors are read into core and a loop on the design variables brings the
connetivity data into, core. Calls to TInvzLS/D perform the required triple matrix products involving
the eigenvector asd the design sensitivity matrices. This information is required to form the frequency
constraint information, which is written to the AWAT matrix.

146

DesgnRequrements:

1. The mod-ave is only called 7f there are active frequency constraints and therefore must follow the
Aywomo n:odale.

2. The TSL morvle makes the assux.aption .at data were wri.ttn to b from this module prior t0
any subcase dependent vlnsitivitcks.

Error Corditions:

Nore

147

Engineering Application Module: FSD

Entry Point: FSDDRV

Purpose:

To perform redesign by Fully Stressed Design (PSD) methods based on the set of applied stress
constraints. All other applied constraints are ignored.

MAPOL Calling Sequence:

CALL FSD (M1DV, NITER, FSDS, FSDE, M4PS, OCS, ALPHA, CNVRGLIM, GLBDES,
LOCLVAR, [PTRANSI, CONST, APPCNVRG, CTL, CTIMIN, DESHIST);

NDV The number of global design variables (Integer, Input)

NITER Iteration number for the current design iteration (Integer, Input)

FSDS The first iteration to use FSD (Integer, Input)

FSDE The last iteration to use FSD (Integer, Input)

MPS The first iteration to use math programming (Integer, Input)

ocs The first iteration to use optimality criteria (Integer, Input)

ALPHA Exponential move limit for the FSD algorithm (Real, Input)

C•R RGL M Relative percent change in the objective function that indicates approxi-
mate problem convergence (Real, Input)

GLBDES Relation of global design variables (Character, Input)

LOCLVAR Relation containing the relationship between local variables and global
variables in the design problem (Character, Input)

EPTRMS] The design variable linking matrix (Character, Input)

CONST Relation of constraint values (Character, Input)

APPCNVRG The approximate problem converge flag (Logical, Output)
= FALSE if not converged
= TRUE if converged in objective function value and design vector move

CTL Tolerance for indicating an active constraint (Real, Output)

CTLMIN Tolerance for indicating a violated constraint (Real, Output)

DESHI ST Relation of design iteration information (Character, Output)

Application Calling Sequence:

None

Method:

The first task performed in the FSD module is to determine if the FSD option is to be used. The assumption
of the module is that the Solution Control STMATEGY requests have been satisfied by the MAPOL
sequence such that, if FSD is called, FSD has been requested by the user for this iteration.

The module checks that the ALPHA parameter is a legal value (>0. 0). If it is not, the default value of
0.50 is used. Then FSD brings the required data into memory. These data consist of the local design

148

variable data (in the PTMS, LOCLVAR and GLEDES entities), which are accessed through the design
variable utility module PEDV with entry points LDVmT and GETLDv. Finally, the CONST relation tuples
associated with the stress constraints are retrieved. If no stress constraints are found, the module cannot
do any resizing and so modifies the MAPOL control parameters FSDS, FSDE, MPS and ocs as outlined
below to prevent the further use of FSD in subsequent iterations.

If the appropriate constraints were found, the module loops through each local design variable and
determines which (if any) stress constraint is associated with that variable. When the matching
constraint is found, the new local variable is computed from:

tnew = (g+l.0)a

If any shape function linked local variables are encountered during this phase, the starting and ending
iterations (rSDS and FSDE) and the appropriate other starting iteration number (the lesser of MPS and
OCS) are modified such that FSD will not be called again. Then execution is returned to the executive.
This prevents any further attempts to use FSD with the shape function linking and directs that the
current iteration be performed used the appropriate alternative method. A warning is given and the
execution continues.

Once the vector of new local variables are retrieved, the PTRMS data is brought into memory along with
the GLEES data. The GLDES data are used to reset any local variable values that are outside their
valid ranges to maximum or minimum gauge. Then the new vector of global variables are computed as:

Vnew = max i

These constitute the new design from the FSD algorithm and are stored back to the GL•DES relation.
The DESHIST relation is updated and an informational message indicating the changes in the objective
function is written. The active and violated constraint tolerances are set to their FSD default values:
CTL=-1 .0 x 10-3 and CNIIN-s. 0x10-3 . This completes the action of the FSD module.

Design Requirements:

1. Only stress constraints (strain constraints are excluded) are considered in the FSD module. If none
are found, the module terminates cleanly with the FSD selection flags reset to avoid any further FSD
cycles.

2. Shape function design variable linking causes the module to terminate cleanly with the FSD selection
flags reset to avoid any further FSD cycles.

Error Conditions:

None

149

E, ngineering Application Module: GDRI

En12y Poinat: GDRDR1

T1 compute the shifted stiffness matrix and the rigid body transformation matrix [GGO] to be used in
phase 2 of Generalized Dynamic Reduction.

MAPOL CaliAirz -equence:

CALL MARI ([K,03, E (O0O, [KSOO], EGGO], LKSET, LJSET, NEIV, FMlX, BC,
BGPDT TBC), USET(BC), NaTT, LSIZE);

[KOO] Stiffness matrix in the o-set (Input)

WMOO] Mass matrix in the o-set (Input)

(KSO0] Shifted Koo matrix (Output)

[EGw] Matix to compute displacements at the g-set due to displacements at the
origin (Output)

LKSET Length of the k-set vectors, LKS3T - -1 if there is no k-set
(Integer. Output)

LJSET Length of the j-set, LJSET- -1 if there is nojset

NEIV Computed number of eigcnvalues below FMAX (Integer, Output)

Maximum frequency of intei est. This is user supplied through the
DYM= entry, but may be modified af.er output to give the desired num-
ber of eigenvalues on input to GDR2 (Real,Output)

BC The current boundary condition (integer, Input)

BGPDT (BC) Relation of basic grid point coordinate data (Input)

USET (BC) The unstructured entity defining structural sets (Input)

NOMIT The number of DOF in the o-set (Integer, Input)

LSIZE The number of DOF in the L-set (Integer, Input)

Application Callin& Sequence:

None

Method:

The module begins by calling subroutine GDRlS to input bulk data infornation. NIEIV, the number oG'
eigenvalues, is then determined using FbX and the Sturm sequence theorem. The Ljsw1T paremeter is
computed as a combination of structural DOF in the a-i;et plus any user input nonstructural DOF The
LKSEZT parameter is specified to be 1. 5 *NEIV and the shift parameter is compulted based on TWAX,
IASET and the machine precision. The shifted stiffness matrix is then computed, the G.o matrix is
computed and control is returned to the executive.

!4

Design Requirements:

1. This module is an alternative to Guyan reduction and therefore parallels the reduction to the a-set.

Error Conditions:

1. j-set DOF have been constrained

2. o-set does not exist

3. Only a subset of roots are guaranteed to be accurate.

151

Engineering Application Module: GDR2

Entry Point: GDRDR2

fu:'ose:

To compute the orthogonal basis (PHIOr] for the subspace to be used in phase 3 of Generalized Dynamic
Reduction.

MAPOL Calling Sequence:

CALL GDR2 ([LSOO], [MDO], [PHIOR], LKSET, LJSZT, NEIV, FMAX, BC);

[LSOO] Decomposed shifted stiffness matrix (Input)

[MOO] Mass matrix in the o-set (Input)

EPEIOK] Matrix of approximate vectors (Output)

LKSET Length of the k-set vectors (Integer, Input)

LJSET Not used

NEIV Number of eigenvalues below nFX (Integer, Input)

4 Maximum ftequency of the NXIV eigenvalues (RealInput)

BC The current boundary condition (Integer, Input)

Application Calling Sequence:

None

Method:

After performing initialization tasks, random starting vectors are generated and an iteration procedure
is performed to obtain an initial set of solution vectors. These solution vectors are transformed into a
orthogonal base for the approximate vectors. If an insufficient number (<< LKSET) vectors are generated
by this process, additional solution vectors are obtained and transformed.

Design Requirements:

1. This module follows G'•R1 and a decomposition of KSoo into LSOO.

2. If LKSET is zero in the standard MAPOL sequence, GmD2 is not called.

Error Conditions:

None

152

* Engineering Application Module: GDR3

Entry Point: GDRDR3

Purpose:

lb compute the transformation matrix [GSUBO] for Generalized Dynamic Reduction.

MAPOL Calling Sequence:

CALL GDR3 ([KOO], [(OA], (MGG], [PRXOK], [7N (BC)], [GGO], [PGMN (C) I,
IPNSF(BC) I, IPFOA(BC)], EGSUBO(BC)], BGPDT(BC) , USET(BC), LKSET,
LJSET, ASIZE, GKOlM, BC);

[KOO] Stiffness matrix in the o-set (Input)

[KOQ] Partition of the stiffness matrix (Input)

[MGG] Mass matrix in the g-set (Input)

[PHIOKI Matrix of approximate eigenvectors (Input)

[7Im (BC) I Matrix relating m-set and n-set DOF's (Input)

CGGO] Rigid body transformation matrix (Input)

[PN•N(PC)] Partitioning vector from g to m and n-sets (Input)

[PNSF (BC)] Partitioning vector from n to s and f-sets (Input)

[PIOA (BC)] Partitioning vector from f to o and a-sets (Input)

[GSUBO (BC)] General transformation matrix for dynamic reduction (Output)

BGPDT (BC) Relation of basic grid point coordinate data (Input)

USET (BC) The unstructured entity defining structural sets (Input)
LKSET Length of the k-set (Integer, Input)

LJSET Length of the j-set (Integer, Input and Output)

ASIZE The number of DOFs in the A-set (Integer, Input)

NOj,"4 The sum of LKSET and LJSET (Integer, Output)

BC The current boundary condition (Integer, Input)

Application Calling Sequence:

None

Method:

The module calculates an overall transformation matrix which relates DOF's in the a-, j- and k-sets to
the o-set. The task is simplified if some of the sets are empty.

153

Design Requirements:

1. This module must follow €DRI.

2. If UMSET is nonzero, GDR2 must also have been called.

Error Conditions:

None

O

15

Engineering Application Module: GDR4

Entry Point: GDRDR4

Purpose:

'To compute updated transformations betweeit displacement sets. Useful for data recovery from Gener-
alized Dynamic Reduction.

MAPOL Calling Sequence:
CALL GDR4 (BC, GSIZE, PSIZE(BC), LKSET, LJSET, NUMDPTBC, NBNDCOND,

([PGWN(BC)], [TMN(BC)], [PNSF(BC)], [PFOA(BC)], [ARL(BC)],
[PDRG-'BC)], [PAJK], [PFJK], BGPDT(BC), USET(BC));

BC The current boundary condition (Integer, Input)

GSIZE Length of the g-set vector (Integer, Input)

PSIZE (BC) The size of the physical set for the current boundary condition. (Integer,
Input)

LKSET Length of the k-set (Integer, Input)

LJSET Length of the j-set (Integer, Input)

1•MuPmC Total number of optimization boundary conditions (Integer, Input)

NMBDCOND Total number of boundary conditions (Integer, Input)

.[PGM (BC)] Partitioning vector from g to m and n-sets (Input)

-![lM (BC)] Matrix relating m-set and n-cet DOF's (Input)

[PNSr (BC)] Partitioning vector from n to s and f-sets (Input)

[PFOA (BC) I Partitioning vector from f to o and a-sets (Input)

[PARL (BC)] Modified partitioning vector to partiticin the a-set to r and 1-sets (Output)

[PGDRG (BC)] A partitioning vector that removes the additional GRe scalar points from
the g-set sized displacement and acceleration vectors. (Output)

..-[PA- Partitioning vector to divide the a-set DOFs that may include QDR gener-
ated scalar points into the original a-set DOF's. (Output)

EPFJK] Partitioning vector to divide the f-set DOFs that may include GDR gener-
ated scalar points into the original f-set DOFs. (Output)

BGPDT (BC) GDR modified relation of basic grid point coordinate data which, on out-
put, will include the scalar points generated by GDR. (Input and Output)

USET (BC) GDR modified unstructured entity defining structural sets which, on out-
put, will include the scalar points generated by GDI. (Input and Output)

Application Calling Sequence:

None

155

Method:

The module computes the partitioning matrix PGDRG to allow reduction of the downstream g-set matrices
to be only the original g-set (before GDR scalar points were added). Similarly the PFJK partitioning vector
does the same for f-set matrices. The USET and BGPDT entities are updated to include the GDR extra
points (which are assigned external id's greater than any existing scalar points and internal id's greater
than the g-size). These degrees of freedom will belong to the k- and/or j-sets. Lastly, a modified PAPL
partitioning vector is also computed in which the a-set are the generalized GDR degrees offreedom (scalar
points and/or physical DOF) and the r-set are the support point DOFs.

Design Requirements:

1. This is the final module in the GDR sequence

Error Conditions:

None

156

* Engineering Application Module: GPWG

pumose:

Grid point weight generator.

MAPOL Callin Sequence:
CAL GWG (N•ITR, BC, GPWGGRID, DEG], OGPWG);

NIMR Design iteration number. (Optional, Integer, Input)

BC Boundary condition number. (Integer, Input)

GM URID Relation containing the data from the GPoW Bulk Data entries. (Input)

EHGG] Mass matrix in the g-set. (Input)

OGPNG Relation of Grid Point Weight Generation Output. (Output)

A2plication Calling Sequence:

None

Method:

The existence of the HGG matrix is checked first. If it does not exist or has no columns, control is returned
to the MAPOL sequence without error. Then the CME relation is read for the current boundary condition
to determine if any GPwNG print or punch request8 exist. ff not, the module terminates.

The invariant basic grid point data are read from B-tGDT and checked to ensure that at least one grid
point exists. If all the points are scalar points, the module terminates without warning. Then the
CONVERT/MASS entry is recovered (if one exists) to allow output of the Gr~d Point Weight from the mass
matrix. Then the coordinates of the reference point are found from the first GPWQ entry in the GPWGGRID
relation or are set to (0.0,0.0,0.0).

The grid point weight is then computed and the results are stored on the OGPWG relation. If a PRINT
requerc exists for the current design iteration or analyse boundary condition, the results are read from
oG•,G and printed to the output file.

Design Requirements:

None

Error Conditions:

None

157

Engineering Application Module: GREDUCE

Et Point: GREDUC

Purpose:

7b reduce the symmetric g-set stiffness, mass or loads matrix to the n-set if there are multipoint
constraints in the boundary condition.

MAPOL Calling Sequence:
CALL GIMDUCE ([KGG) , [PG), [PGt. (BC) I), [THN• (BC))I, [1,.•), [E3)

[IKG] Optional matrix containing the global stiffness or mass matrix to be re-
duced (Input)

[PG] Optional matrix containing the global applied loads to be reduced (Input)

[PGMN (C)] The partitioning vector splitting the structural degrees of freedom into
the independent and the multipoint constraint degrees of freedom (Input)

[nz (SC)] The transformation matrix for multipoint constraints (Input)

Emle] Optional matrix containing the reduced KGG matrix for the independent
degrees of freedom (Output)

EPN] Optional matrix containing the reduced PG matrix for the independent de-
grees of freedom (Output)

NAplication Calling Seguence:
None

Method:

The WDUCz utility module performs the multipoint constraint reduction on the stiffness and/or mass
and/or loads matrix based on the presence or absence of input arguments. The only required arguments
are the partitioning vector PCG and the rigid body transformation matrix 7W. If the rxGG argument is
not omitted, the following operations are performed using the large matrix utilities:

[SCRi] - [KNN] + [MI] [EMNI

[ScR2] = [scR1] + []TEM)

[ScR1] - EXMi [E[MO]

ESCR2] - [SCRi] + [•DNT•MW]

[XMe] _ [SCR2] + [TW]T[TjN]

These operations require the creation of four scratch mattix entities for the intermediate results and
the partitions of the KGG matrix.

1

1.58

If the PG argument is not omitted, the following operations are pbrformed using the large matrix utilities;

[PGJ -14{}

[P1 = [J + [-•] T•[zi

These operations require the use oftvto scratch matrix entities for the partitions of he PG matriit When

both YGG and PG are reduced, tUhe scratch partition matrices are shared.

Designgquirements:

N one

Error Conditions:
None

I

,I1

159

Engineering Application Module: GTXCAD

Entry Point: GTLOAD

h!Mse:

Tb assemble the current static applied loads matrii for any statics subcases in the current boundary
condition.

MAPOL Calling Sequence:

CALL GTLOAD (NITER, BC, GSIZE, BGPDI(BC), GISD.E5, S1-LOD, (,)PTEVZI,
[DMMq•I], [PG], OMXP.DLOD) ;

NITJZR Design iteration number (Integer, Input)

BC Bounidary condition iden~tification number (Integer, Input)

GSI.E The size of the structural set (Integer, Input)

BGWT (BC) Relatikn of baoic grid point coordinate data (Input)

G WES Relation of global design variables (InpuO)

SMPLOD Unstructured entity of simple load vector information kInput)

[DPTHVI] Matrix entity containing the thermal load sensitivities (Input)

.DPMVI] Matrix entity containing the gravity load sensitivitieR (kiput)

2G•] The matrix ,if applied loads in the global structural set (Output) -

OBIDLO Relation of loads on structural grid points. (Output)

A2plication Calling Siguence:
None

Method:

The cAS, relation tuples for the current boundary condition are br-zught into memory to obtain the
medchanical, therfml and/or gravity simple load identification numbers for each STATICS discipline,
The ueu bulk data relation is also read into memory to process combined simple loads requests. Finally,
the S•d•_tM data are read to determine the number and types of each simple load defined in the bulk
data packet. The P1 matrix is flushed and initialized prior to the start of the loads assembly loop. This
loop consists of a search to determine if the load case is

(1) a simple mechanical load

(2) a simple gravity load

(3) a simple thermal load

(4) e, combination of mechani--al and/or gravity lo08A

The column of the P] matrix associated with each right-hand side is assembled using the UGWD (and
LOD) data. The thermal and gravity loads are special in that the GLWZS information must be retrieved
in order to assemble the loads representing the current design. The case where no design variables are
defined does not represent a special case, however, since the DPVRG" and DPTWGI entities always include
terms representing the "ze:oth" design variable. Once all the STATICS cases have 1' sen processed, the
module terminates.

160

Design ReQuirements:

1. The module assumes that at least one STATIC load case is defined in the CASE relation for the current
boundary condition.

2. The SMPLOD entity from the LODGEN module must exist as must the DPVRGI and DPTHGI gravity and
thermal load sensitivity matrices.

Error Conditions:

1. No simple loads are defined in the nMPL0D entity

S~131

Engineering Application Module: IFP

Enta Point:, :-p

PuRpose:

Uo process the Bulk Data Pocket and to load the input data to the data base. Also, to compute the external
coordinate system transformation matrices and to create the basic grid point data.

CALL IFP (GSIZEB);

GSIZEB The size of the structural set (Integer, Output)

Application Calling Sequence:

None

Method:

The Input File Processor module performs several tasks to initialize the execution ofASTROS procedure.
It begins by setting the titling information for the ZFP bulk data echo (should that option be selected).

Following these tasks, the module continues with the interpretation of the bulk data 1.acket of the input
stream. This packet resides on an unstructured entity called &BRTT XT which is loaded by the executive
routine M.PAS during the interpretation of the input data stream. The IFI module proceeds in two
phases. In the first phase, the bulk data are read, expanded fiom free to fixed format and sorted on the
first three fields of each bulk data entry. If an unsorted echo is requested, that echo is performed as the
W=TPAT entity is read. If a sorted echo is desired, it is performed after the expansion and sort has
taken place. In either case, the bulk data is sorted by the IT module. The resultant data are stored on
one or more scratch unstructured entities depending on how many passes must be performed to
accomplish the sort in the available memory. If all the bulk data fits into open core, only a single scratch
file is required.

For the MDEL punch option request, the expanded and sorted input Bulk Data entries are divided into
following categories:

(1) element defiPition entries (e.g. CEAR)

(2) property definition entries (e.g. PEra)

(3) design variable linking and design constraint definition entries (e.g. DESEW,, DZSVARP, DZSVAPS
and DCONVw4, wCONxxx)

(4) the rest of the Bulk Data

Those entries in categories (1), (2) and (4) are stored in corresponding unstructured entities for use in
module DEB9tICU1. Those in category (3) are not saved forDESPURCH, since it will output aMODEL without
the design entries.

The second phase of the bulk data interpretation proceeds based on the sorted bulk data from the
expnnsion phase. Thas phase begins by reading the first bulk data entry in the sorted list and locating
its bulk data templawe in the set of templates stored on the system data base by the SYSGEN program.
This template defines the card field labels, the field variable type, the field default value: the field error
checks and information on where to load the field into the data base loading array. The template is
compiled once and all like bulk data entries are processed together. Any user input errors that are
detezte '•iee flagged with a message indicating the field that is in error and whether the enror consists
of an illegal data type (i.e, an integer value in a real fiel) or of an illegal value for the given field (i.e.,

162

a negative element identification number). Note that the iFP module is only checking errors on a single
bulk data entry and does not perform any inter-entry compatibility checks.

This process is then repeated for each different bulk data entry type in the sorted list of bulk data entries.
If any errors have occured, the module terminates the ASTROS execution. As a final two steps, the IrP
module performs calls to the HMKaT, HKBGPD and MKUSET submodules to create the transformation
matrices for any external coordinate systems, to generate the basic grid point data and to make an error
checking pass over the structural set definitions. These three tasks are not explicitly part of the IFP
module but are so basic to every execution that they cannot properly be considered MAPOL engineering
application modules. Any errors resulting in these two tasks will also cause t~ie run to terminate with
the appropriate error messages.

Design Requirements:

None

Error Conditions:

1. User bulk data errors are flagged and cause program termination.

2. Inconsistent or illegal coordinate system definitions.

3. Illegal grid/scalar and/or extra point definitions.

4. Illegal structural set definitions in the MODEL.

163

Engineering Application Module: INEERTIA

Entry Point: INRTIA

Puose:

lb compute the rigid body accelerations for statics analyses with inertia reliet.

MAPOL Calling Sequence:

CALL INERTIA (LES(BC)], [ENS(BC)], CAR]);

[LBS (BC)] Rigid body reduced mass matrix (Input)

[ERSS (BC) I Applied load vector reduced to the r-set (Input)

[AR] Matrx of acceleration vectors (Output)

Application Calling Sequence:

None

Method:

Matrices LS and m•s are read into memoi y and Alt is computed by solving [ELS] AR] [RR I]

Design Requirements:

1. There must be an r-set and the reductions to the r-set must have been perfcrmed.

Error Conditions:

1. The LES matrix is singular.

164

Engineering Application Module: ITERINIT

SPoint ITINIT

Purpose:

Initializes the CONST relation for the current iteration.

MAPOL Calling Sequence:

CALL ITENINIT (NITER, CONST);

KITER Design iteration number. (Integer, Input)

CONST Relation of design constraints. (Input and Output)

ADplication Calling Sequence:

None

Method:

This module munt be called at the top of each deoign iteration loop. Its function is twofold: 1) to set the
iteration number page header into SUBTITLE (88:) in the /oUTPT2/ common and 2) to reset the CONST
relation on restart runs.

Each page of output during the design iterations is labeled in the SUBTITLE line with the iteration
number. It is this module that sets that part of the SUBTITLE line that contains that information.

- k The CONST relation is opened and, if not empty, a conditioned retrieval is done to see if any entries exist
with ;-- Ite,:ation number greater than or equal to the current NITER. If so, the CONST relation entries
with N-IT values less than the current NITER are copied to a scratch CONST relation, the scratch name
is exchanged for the old CONST name and the scratch entity (now pointing to the original CONST) is
destroyed. Thus, all entries with NITER values associated with iterations that have not yet occurred are
flushed. 'lhis resetting of the CONST relation is done so that ASTROS can be restarted at a previous
design iteration merely by setting the value of NITER in the MAPOL sequence back to the desired
starting iteration number.
If CONST is empty or if no restart actions are required, CONST is closed and the module terminates

ithout action.

Design Requirements:

1. ITERINIT is one of the few application modules that is allowed to touch the TITLE, SUBTITLE and
L2ML entries of the /OUTPT2/ common beyond the 72nd character. While applications may set the first
72 characters with the input TITLE, etc., generally only the system may modify them beyond that. These
labels ere used by UTPAZ.

Error Conditions:

None

165

Engineering Application Module: LAMINCON

ERy Point: LAXCON

Tb evaluate composite laminate constraints defined on DCONLAIt, DC mbm- end DO bulk data

entzes.

MAPOL Callin _Sequence:
CALL, LAMINCON (NITER, NDV, DCM4LW, DCONLMN, DCORPM, TFI=D, GLSDES,

LOCLVAR, [PTRA7NS], CONST };

211TF. Design iteration number. (Integer, Input)

The number of global design variables. (Integer, Input)

DCONZ.M The relation containing the DCONuaI entries, (Input)

DCMULM• The relation containing the DCONWRD entries. (Input)
DCORPM The relation containing the Dcwna• entries. (Input)

TFIXED Relation of fixed thicknesses of undesigned layers of designed composite
elements (Output)

GLBDES Relation of global design variables. (Input)

LOCLVAR Relation containing the relationship between local variables and global
variables in the design problem. (Input)

[PmmAns] The design variable linking matrix. (!iput)

CONST Relation of constraint values. (Output)

A2plication Calling Sequence:

None

Method:

The LACNCO'N module begins by checking if the DCOmx= entities contain any entries. If there are any
entries, they are considered to be design constraints and are imposed (computed). To set up for the
computations, the local design variable data, ELMLIST and PLYLIST data are read into memory. Then
each type of constraint is processed in the order: ply minimum gauge, laminate minimum gauge and
laminate composition. As each constraint is computed, it is stored to the CONST Yelation The rI,.XzD
relation contains the thicknesses of all undesigned layers of composite elements and is used in the
evaluation of these constraints to determine the thicknesses of layers defining either the ply or the
laminate.

Design Requirements:

None

Error Conditions:

1. Missing PLYLIST or ELUM•IST data referenced on DCONCZ entries

2. Ply or laminate definitions that include only undesigned layers.

166

Enginearing Application Module: LAMINSNS

Fa, Point: LAMSNS

To evaluate the sensitiv -ties of compcsite la-inate constraints defined on DCONLAK, DCImONLM and

DCONPMN bulk data entries.

0MAPOL Calling Sequence:
CALL LAHINSNS NITER, NDV, GLEDES, LOCLVAR, [PTRANS], CONST, EAMAT]);

NITER Design iteration number. (Integer, Input)

NDV The number of global design variables. (Integer, Input)

GLWDES Relation of global design variables. (Input)

LOCLVCAR Relation containing the relationship between local variables and global
variables in the design problem. (Input)

[PTXANR] The design variable linking mbtrix. (Input)

CONSIT Relation of constraint values. (Input)

[rAMT] Matrix of constraint sensitivities. (Output)

A.p2lication, Cali

None

Method:

TheLAVXTNSNS module begins by checking the CONST relation to see if any of the active constraints are
DCO='4,DCONPM or DCONLM. These constraint types ar3 processed in this module if any are active.

If any active laminate constraints are present, their sensitihities are computed firom the data in the
CONST relation and the fpZ[•±*s] matrix of sensitivities. The format of the LOCLVAP and P sTRMIS
data are sch that, for each row in LOCLVA,, the correspcnding column in E[•A m s] is the sen-itivity
iof the lofa! design variable.

P = -

These arcs the constituents of the der±hative computations. The eipruopriate columns are slimmed and
combined with scale factors such as the current thickness and allowable to compute ea-h of the constra -it
derivativces.
For ply and laminate rainimum gauges, the constraint derivative is computed as:

nPly at.
=Y tm

where

tw.n= ply or iam.iate minimum gauge

167

nply = number of designed plies defining the ply or laminate

For laminate composition constraints, the constraint derivatives are different depending on whether an
upper or lower bound constraint is imposed:

[i=1 ./=1l

1 [npp np 1LL

where

= current laminate thickness

tpiy = current ply thickness

npp = number of layers in the currentply

npl = number of layers in the cu-rent laminate

_D2esign Requirements:

None

Error Conditions:

None

168

Engineering Application Module: LODGEN

Entry Point: LODGEN

Pa em
'Tb assemble the simple load vectors and simple load sensitivities for all applied loads in the Bulk Data
packet.

MAPOL Calling Sequence:

CALL LODG (GSIZES, GLBDES, DVCT, DVSIZE, GbOCT, DMVI, TELM, TREF, SMPLOD,[D)P m r , [DPMW]:) ;

GSIZE Length of the g-set vectors (Integer, Input)

GLBDES Relation of global design variables (Input)

DVCT Relation containing the data required for the assembly of the design sensi-
tivity matrices (Input)

DVSIZE Unstructured entity containing memory allocation information on the
DVCT relation (Input)

Gb4CT Relation containing connectivity data for the DMVI sensitivity matrix
(Input)

rDrr Unstructured entity containing the mass design sensitivity

TO•E Unstructured entity containing the element thermal load partitions
(Input)

TREF Unstructured entity containing the element reference temperature (Input)

WSILOD Unstructured entity of simple load vector information (Output)

ED•PTVII Matrix entity containing the thermal load sensitivities (Output)

:DFORVI] Matrix entity containing the gravity load sensitivities (Output)

LA lication Calling Sequence:

None

Method:
The module begtins with a call to subroutine aciz which performs extensive error checking on the bulk

data and solution control com mands related to applied loads and performs bookkeeping tasks prior to
the computation of the simple loads. Control is then returned to LODGE and csm and BGPDT data are
read into core. A loop on the number of unique external load ID's is then begun. Calls to PCONST and
PFOLOW place meehanical loads bulk data information into a GSIZE loads vector. This vector is then
written to the sm.OD unstructured entity and the process ir. repeated for the remaining external loads.
If' there are thermal loads, a call to TMM•S/D creates columns of the DPTEGI matrix based on element
thermal matrices and temperaturc data If there are gravity lcads, a call to AwVs/D constructs
acceleration vectors and then computes DPVGI columns based on the acceleration vectors and the Dv-
u!structuned entity. The DVCT, TE14. and TREF entities are purged and control is returned to the
executive.

1

169

Design Requirements: 6
1. For the general case, this should be the last preface module because it may require inputs from DIG
and m&1.

Error Conditions:

None

1

i 170

* Engineering Application Module: MAKDFU

Entr!, Point: MAKDFU

Purpose:

'Tb assemble the sensitivities to the displacements of active stress and displacement constraints in tha
current active boundary condition.

MAPOL Calling Sequence:

CALL MAKDFU (NITER, BC, GSIZEB, [SMAT], [GLBSIG], CONST, [DFDU],
ACTUAGG, SUB);

NITER Design iterntion number (Integer, Input)

BC Boundary cendition identification number (Integer, Input)

GSIZEB The size of the structural set (Integer, Input)

[SMT] Matrix entity containing the sensitivity of the stress and strain compo-
nents to the global displacements (Input)

[GLBSIG] Matrix of stress/strain components for all the applied stress constraints
for the current boundary condition (Input)

CONST Relation of constraint values (Input)

[DFDUJ Matrix containing the sensitivities of active displacement and/or stress-
strain constraints to the displacements (Output)

ACT'•GG Logical flag to indicate whether any dfdu terms exist (Logical, Output)

SUB An optional flag which indicates whether statics or static aeroelasticity is
associated with the constraints in this call.The discipline flag
= 0 if STATICS
= subscript identifier, SUB, of the aeroelastic subcases if sAERo
(Integer, Input)

Application Calling Sequence:

None

Method:

For the current active boundary condition, the iba=u module begins by processing the active displace-
ment constraints. The CONST relation is queried for all active displacement constraints (CTYFZa3). Each
tuple that qualifies the active condition is processed using the 1mm attribute to position, to the
appropriate location within the DCENT entity. The DCENT terms are loaded in the DmU matrix in the
order that active displacement constraints are encountered in the CONST relation. Constraints are
evaluated for each load condition within the active boundary condition in constraint type order. The
DFDU matrix is thus also formed in this order but the inactive constraints are ignored.

After processing the active displacement constraints (if any), the I@AKDF module processes the activ,'.
stress/strain constraints. The CONST relation is conditioned to retrieve the active stress and/or principal
strain constraints (cTYn's 4, 5 and 6). For each active constraint, the current boundary condition
number and the load condition number (stored on the CONST relation in the SCEVAL module) are used
to determine the column number of the SaT matrix that holds the sensitivity of the current stress term
Wt the displacements. Having recovered the MT columns for the current active constraint, the DFDU

171

terms are computed based on the element type arid conatrmint ty'pe. Where the sensitiovity is a furnctionof the stresdstrain values, the appropriate rows oif tho GIBSIG column associated with the currentboundary condition/load condition/dipciplihe are retrieved for ase in the computations.
•D~ •3Re qa rem ents:-

None

,rror Conditions:

None

172

Engineering Application Module: MAKDFV

EtPn MAKDFV

To assemble the sensitivities of active thickness constraints.
MAPOL Calling Sequence:

CAML MP FV (NITER, NDV, [PHINT3, [PHAXT], CONST, [AMAT]);

NITER Design iteration number (Integer, Input)

NDV The number of global design variables (Integer, Input)

[PICNT] Matrix entity containing the minimum thickness constraint sensitivities
(Input)

[PAXT] Matrix entity containing the maximum thickness constraint sensitivities
(Input)

CONST Relation of constraint values (Input)

(KMAT] Thie matrix of constraint sensitivities to the global design variables
(Output)

-oliation Calling Seuence:

None

Method:

The I rD V module begins by determining if any active thickness constraints exist for this design
iteration. The CONST relation is conditioned to retrieve active minimum and maximum thickness
constraints. If any active constraints are found, they are processed in the order recovered from the CONST
relation; that is, active minimum thickness constraints followed by active maximum thickness con-
straints. Since the constraint sensitivities are functions of the current local variable value when they
are controlled by move limits rather than gauge limits, the execution of the module proceeds with the
calculation of all the individual layer thicknesses for all the elements designed by shape functions. Since

- .ove 1biits are considered to be desirable in the vast majority of cases and because there is no reliable
way to determine before-hand if any particular active constraint is move limit controlled, the local
variables are always computed in this module. The P%?mAs matrix, prepared in the MK=ST module is
used to evaluate these thicknesses:

{t} = [PTRANS] T v}

After the local variables have been computed, the LOCLVAR relation (also built in the MAMEST module)
is used to determine the current total thickness for a layered composite element. The VFI,3 entity
gives that portion of the thickness of composite elements that is not designed. The sensitivities of the
thickness constraints are essentially the appropriate column of the PbaNT or PWXT matrix. Th- column
is identified by the PNu attribute of the CONST relation. If the particular local variable constraint is
controlled by move limits, however, the sensitivity becomes a function of the current thickness and must
be adjusted accordingly. This applies only to minimum gauge constraints, however, since move limits
are not applied to maximum thickness constraints. The resulting constraint sensitivities are loaded, in
the order processed, onto the AMT matrix.

173

Desi n Recuirements:

1. The move limit that is passed into this routine must match the value used to evaluate the constraints
in the TCrVA module. If not. the constraint sensitivities will be in error with no warning given.

Error Conditions:

1. The move limit must be greater than 1.0 if it is imposed.

17

S~174

* Engineering Application Module: MAKDVU

Entry Point: MAKDVU

Purpose:

To multiply the stiffness or mass design sensitivities by the active displacements or accelerations.

MAPOL Calling Sequence:

CALL MAKDVU (NITER, NDV, GLBDES, [UGA], [DKUG], GMKCT, DKVI);

NITER Design iteration number (Integer, Input)

NDV Number of design variables (Integer, Input)

GLBDES Relation of global design variables (Input)

[UGA] Matrix of "active" displacements or accelerations for the current boundary
condition (Input)

[DRUG] The product of the design sensitivity matrices and the active displace-
ment/acceleration vectors (Output)

GHKCT Relation containing connectivity data for the DKVI sensitivity matrix
(Input)

DMVI Unstructured entity containing the stiffness or mass design sensitivity
matrix in a highly compressed format (Input). Application Calling Sequence:

None

Method:

This is a utility module that performs a matrix multiplication of a g-set matrix of displacements or
accelerations and the g-set sized design sensitivities DIKi or DMVI entities that are the NDV g x g design
sensitivity matrices stored in a highly compressed format.

The module first reads in design variable information (ID and value) and then space is reserved for the
maximum DMVI record. A determination is made as to how many columns of UGA and D=VG can be held
in core simultaneously. Spill logic is used if not all the columns can be processed simultaneously.
Columns of UGA are read into core and a loop on the number of design variables is made to calculate the
columns of the DKUG matrix. Care is taken to write null columns when a particular design variable has
no DKVI entries. The merInL subroutine is called by mAKDVU to multiply the unstructured data and the
response vector.

Design Requirements:

1. The format of the DKVI/GKCT inputs is assumed to parallel the structure of those entities output
from EMAL.

Error Conditions:

None

0
175

Engineering Application Module: MAKESTI

Entry Point: MAKEST

Purpose:

To generate the element summary relational entities for all structural elements. Also, to determine the
design variable linking and generate sensitivities for any thickness constraints.

MAPOL Calling Sequence:

CALL XMKEST (NDV, GLBDES, [PTRANS], [PMNT], [PMAXT], LOCLVAR,
TFIXED, DESLINK);

NDV The number of global design variables (Integer, Output)

GLADES Relation of global design variables (Output)

[PTRAS] The design variable linking matrix (Output)

[RmNT] Matrix entity containing the minimum thickness constraint sensitivities
(Output)

(R4x] Matrix entity containing the maximum thickness constraint sensitivities
(Output)

LOCLVAR Relation containing the relationship between local variables and global
variables in the design problem (Output)

TFIXED Relation of fixed thicknesses of undesigned layers of designed composite
elements (Output)

DESLINK Relation of design variable connectivity from MAKEST module containing
one record for each global design variable cornected to each local vari-
able. (Input)

Application Calling Sequence:

None

Method:

The Mn ST module performs the first phase of the structural element preface operations with the EM
module performing the second phase. The first action of the module is to perform the uniqueness error
checks on the element bulk data as stored on the data base by the IFP module. These checks ensure
that all property entries have unique identification numbers within each property typo (with the
exception of the Pcompi entries where duplicate ID's signify different composite layers). Also, unique
identification numbers for the wPTi entries are enforced across all MTi types. The NH3MEST module then
performs the initial processing of the design variable linking in the PEEDES module. The GLEDES re!ation
is set up in memory with several columns to be filled in as the design variable linking is continued later
in the module. If there are design variables defined in the bulk data, the number of global design
variables, VDV, is determined for output to the MAPOL sequence and a number of scratch and hidden
entities are opened to prepare for the design variable linking task performed in this module.

The N EST module continues by reading in the BGPDT data and initializing the PTRMS, PHIN, and
RWCT matrix columns that are built on the fly in the element dependent routines. The module then
calls each element dependent routine in turn. The order in which these submodules are called is very
important in that it provides an implicit order for the MST, EMz, SCEVL, ZDR and orP modules.

176

That order is alphabetical by connectivity bulk data entry and results in the following sequence:

(1) Bar elements

(2) Scalar spring elements

(3) Linear isoparametric hexahedral elements

(4) Quadratic isoparametric hexahedral elements

(5) Cubic isoparametric hexahedral elements

(6) Scalar mass elements

(7) General concentrated mass elements

(8) Rigid body form of the concentrated mass elements

(9) Isoparametric quadrilateral membrane elements

(10) Quadrilateral bending plate elements

(11) Rod elements

(12) Shear panels

(13) T•iangular bending plate elements

(14) Triangular membrane elements

Wit•in each element dependent routine, the xcxEST relation for the element is opened and flushed. If
design variables exist in the MODEL, the ELIST, PLIST and SHAPE entries associated with this element
type (if the element can be designed) are opened and read into memory for use in the design variable
linking. Then the connectivity relation for the element is opened and the main processing loop begins.
Earh tuple is read, the grid point references are resolved into internal sequence numbers and coordi-
nates, the property entry is found from the proper property relation(s) and the EST relation tuple is
fonred in memory. Numerous checks on the existence of grid points, property entries and the uniqueness
of the element identification number within each element type are performed.

Finally, if there are design variables, the DESCEK submodule is called to determine whether the element
is linked to a design variable. The DESCEK utility searches the in-corb GLEDES, ELIST. PLIST and/or
SHAPE data and determines if the current element is designed. Also, the final attributes of the GLEDES
relation for physical and shape function linking are completed. The module performs error checks to
ensure that the rules for design variable linking are satisfied for each particular global design variable
and element.

On return to the element EST routine, the LOCLVAP, PTRANS, PMxlNT and/or Pmxt entities are built for
the local design variable if the element was found by DESCEM to be designed. Finally, any restrictions
on the behavior or options for designed elements are checked for and the proper warning messages
issued. For example, a designed element's nonstructural mass is reset to zero with a warning message.
Finally, the constraint flags, design flags and thermal stress information are set. The constraint and
thermal stress attributes will be revised as needed in the ZMo module.

177

When all the elements have been processed, the EST relation for the element type is loaded to the data S
base. Care is taken that the final relation is sorted by the element identification number. When all the
element routines have been called, the DESLINK entity, which was formed on the fly in the element
routines, is loaded to the data base. This entity contains the number of and identification numbers for
each design variable connected to each designed element. These data are used to generate the DVCT
relation in the IMG module. All the other design variable linking entities that have been built on the fly
are also closed. Any queued error messages are dumped to the user file and the module terminates.

Design Requirements:

1. The basic connectivity data from the IFP module must be available.

Error Conditions:

1. Numerous error checks are performed on the consistency of the bulk data for structural element
definition as well as of element geometry and connectivity.

2. Design variable linking errors are flagged.

I17

178

, Engineering Application Module: MR2GG

Entry Point: MK2GG

Purpose:

Interprets case control for the current boundary condition and outputs the M2GG and/or K2GG matrices
if any.

MAPOL Calling Sequence:

CALL !.2GG (BC, GSIZEB, (M2GG], M2GGFLAG, [K2GG], K2GGFG);

BC Boundary condition number. (Integer, Input)

GSIZEB Number of g-set DOF's excluding any that may have been added on ear-
lier iterations by GD•. (Integer, Input)

(M2GG] Direct input g-set mass matrix for the current BC. (Optional, Output)

M2GGz7AG Flag indicating whether M2tG was loaded with data (Optional, Logical,
Output)

[,2GG] Direct input g-set stiffness matrix for the current BC. (Optional, Output)
Flag indicating whether K20G was loaded with data (Optional, Logical,
Output)

Application Calling Sequence:

"None

Method:

First the CASE relation is read for the current boundary condition to determine ifM2CG or K2WG matrices
were named, Error checking is performed to ensure that an output matrix is passed to M92G. for both
matrices if both are named in CASE. The arguments are otherwise optional. Further, the entities named
,n CASE are checked to ensure that they are matrices and that they are square and of the proper row
and column dimensions (GSIZEB x GSIZEB).

Then the named output matrix is created, or if it already exists, flushed. The APPEND utility is used to
copy the named entity onto the output entity.

Design Requirements:

1. The DMIG or DM1 entries that may be sources of the M2GG and/or K2GG matrices must be processed
prior the the calling of this module. Thi., module assumes that the named entities already exist.

Error Conditions:

1. x2GG entities do not exist.

2. x2GG entities are not matrix entities

3.. 2ss entities are not of the proper dimension.

4. All errors cause ASTROS termination.

179

Engineering Application Module: HKmAT

Entry Point: K ,MAT

Purpose:

To assemble t.-. constraint sensitivity matrix from the sensitivity matrices formed by mOru and the
sensitiviies af the displacements for active static load conditions in the current active boundary
condition.

MAPOL Calling Sequence:

CALL M (AT ([AMAT], [FT.RST], [SECOND], PCA, rPGA');

[AMAT] Matrix of sen3itivities of the constraints to the design variables (Input
and Output)

[FIRST] Leading matrix in the multiply to obtainr ?.AT (Input)

[SECOND] Trailing matrix in the multiply to obtain AmAT (Input)

PCA Unstructured entity wb-cb contains the unique subcase numbers for the
constraints that are active for the boundary condition. Only constraints
for the current boundary condiftion are included in the list (Input)

-PGAI Partition vector for active dispacement vectors (Input)

Application Calling Sequence:

None

Method:

Conceptually, the module multiplies the transpose of the FIRSTr matrix times the SECOND. The data in
the two matrices are determined based on whether the gradient method or the virtual loads method of
sensitivity analysis is being employed (see Subsection 6.3 of the Theoretical Manual). The matrix
multiply is complicated by the fact that it may be necessary to partition the matrices for each subcase
that is aclive in the boundary condition.

The module hog.ins by reading the PCA and PG, inforir stion in't, core. The number and identity of the
active subcases is determined. If the number is greater t iaw one, nine scratch matrix entities are created
to store intermediate data. Aloop on the number of acti-ve se•bcases then occurs. If i- is not the last pass
through thiW loop, the FIRST matrix is partitioned to obtain the :w-1 columns that apply for the current
subcase akid the SECOND matrix is partitioned to obtain only ihe that correspond to acive
constraints for the subcase.

The algorithm is somewhat more complicated than this in that the parts of the mat.icei that remain
after partitioning are renamed to FIRST and SECOND so that the partitioning operation becomes
successively smaller and no partition is required on the last pass through the loop. The extracted
•atrices are then multiplied and the resulting matrix is either hT (when there is only one active
sub '. sr and the A T matrix was empty on entering the module) or it is appended to MaT. Once the
loop -s completed, any scratch matrices are destroyed and control is returned to the executive.

180

Design Requirements:

1. This module is invokAd at the end of the boundary condition loop in the sensitivity analyeis portion
of the •AFOL sequence.

2. It is called only if there are active s'tess and displacement constraints for the boundary condition.

Error Conditions:

None

181

Engineering Application Module: MKUSET

Enmtry Point: MCIi.SET

Purpose:

1b generate the structural set definition entity, USET, for each boundary condition and to form the
partitioning vectors and transformation matrices used in matrix reduction.

MAPOL Calling Sequence:

CALL MKUSET (BC, QSIZEB, EYS(BC)I, (P (BC)I, EPGM(EC)1, USF(BC)],
[PFOA(BC)], [PARL(BC)], USET(BC));

BC Boundary condition identification number (Integer, Input)

GSIZED The size of the structural set (Integer, Input)

[YB (BC)] The vector of enforced displacements (Output)

[E4 (BC)] The transformation matrix for multipoint constraints (Output,)

[POW (BC) I The partitioning vector splitting the structural degrees of freedom uito
the independent and the multipoint constraint degrees of freedom (Ot.t-
put)

[PNSF (BC) 3 The partitioning vector splitting the independent degrees of freedom into
the free and the single point constraint degrees of freedom (Output)

[PkOA (BC)] The partitioning vector splitting the free degrees of freedom into the
analysis set and the omitted degrees of freedom (Output)

[P•L (BC)] The partitioning vector splitting the analysis set degrees of freedom into
the i-set and the support degrees of freedom (Output)

USET (BC) The unstructured entity defining structural sets (Output)

Application Calling Sequerce:

None

Method:

The M'NUSET module performs four tasks. The first is to build the osET entity of structural set definition
masks for the input boundary condition. At the same time, the rigid constraint matrix, •T, relating the
dependent multipoint constraint degrees of freedom to the independent degrees of freedom is formed.
Also, the vectors of enforced displacements for single point constraints are formed. Lastly, the partition-
ing vectors for the structural sets are formed.

The generation of boundary condition dependent subscripted matrix entities requires that the MKUSET
module be called once for each boundary condition in the Solution Control packet. The looping logic is
contained in the standard executive sequence rather than within the module itself. Each structural
degree of freedom (DOF) is assigned a word in each record of the us= entity (aerodynamic degrees of
freedom and extra points are ignored). One record is created for each boundary condition in the Solution
Control packet. The MUSET module determines to which sets a structural DOF belongs and sets the
corresponding bits in the USET word associated with that degree of freedom. That word is the bitmask
for that degree of freedom.

182

The assignment of a bit position for each structural set is defined as shown below and are stored in the
/BITPOS/ common block:

SET BIT DESCRIPTIONPOSITON

ux 16

UJJP 17 Used for dynamic reduction
UJJ 18
UKK 19

USB 20 Single point constraints (SPc)

Us(V 21 Permanent sPcs
UL 22 Free points left for solution
wA 23 Analysis set

____ 24 Free degrees of freedom

UN 25 Independent degrees of freedom
UG 26 Dependent degrees of freedom
UR 27 Support set DOF
UO 28 Omitted (Guyan Reduction) DOF

Us 29 Unions of USB and USG sets
UX 30 Dependent lPC DOF

The MKUSET module begins 13y preparing memory blocks for use by the module subroutines. The BGPDT
tuples associated with structural noues are brought into core for use in conversion of external identifi-
cation numbers to internal ;dentification numbers. Each separate structural set is processed by an
individual submodule of MKUs72T with the defaulting for unspecified DOF taking place in the module
driver The CASE relatien is read to determine the boundary condition definition for the current boundary
condition. The submodule UMET, responsible fer multipoint constraint set definition also build the T
matrix while the USSET submodule for single point constraints builds the YS vector. After the USET
masks have been built for the boundary cbr dition, extensive error checking occurs to ensure that each
point is placed in no more than one dependent structural set. If no errors have occured, the USET record
is written and the associated partitioning vectors are formed.

Desin Requirements:

1. The IMUSET module requires that the CAsE relation be complete from the SOLUTION module and that
the BGPDT be formed either by the BCBGPDT or in. modules prior to execution.

Error Conditions:

1. Any inconsistent boundary condition specifications are flagged.

2. Any missing bulk data referenced by Solution Control is flagged.

183

Engineering Application Module: NREDUCE

Entry Point: NREDUC

Purpose:

To reduce the symmetric n-set stiffness, mass or loads matrix to the f-set if there are single point
constraints in the boundary condition.

MAPOL Calling Sequence:

CALL NDUCE ([ENN], [PN], [PNSF(BC) I, [YS(BC)], ["IT], EIFSI,
[KSS], [PF], [PS]) ;

[INZM] Optional matrix containing the independent stiffness or mass matrix to
be reduced (Input)

[PN] Optional matrix containing the applied loads to be reduced (Input)

[PNSF (BC) I The partitioning vector splitting the independent degrees of freedom into
the free and the single point constraint degrees of freedom (Input)

LYS (BC)] Optional matrix containing the vector of enforced displacements (Input)

[KI7] Optional matrix containing the reduced form of mwN (Output)

[IFS] Optional matrix containing the off-diagonal partition of 1rF (Output)

[SS] Optional matrix containing the dependent diagonal partition of K" (Out-
put)

[PF] Optional matrix containing the reduced form of PH (Output)

[PS] The load matrix partition for computation of spcforces (Output)

Application CallingSequence:

None

Method:

If the w argument is nonblank, the module determines the number of columns in the loads matrix.
Further, if the Ys vector is nonblank, it is expanded to have the proper number of duplicate columns.
Having taken care of the YS matrix, the module proceeds to check if the MW argument is nonblank. If
so, and there are no enforced displacements, the mw matrix is partitioned into x" and mFs (if the IFS
matrix is input). If there are enforced displacements, the 1SS partition is also saved if the Kss argument
is supplied. The module then proceeds to reduce the loads matrix if the PN argurnent is nonbiank. If
there are no enforced displacements, the matrix is simply partitioned to PF. When enforced displace-
ments are present, the loads on the free degrees of freedom are computed as:

[PF] - [PF] - [KFS] [YS]

The module then terminates.

184

. DDesign Requirements:

1. If there are nonzero enforced displacements, the stiffness and loads reductions must be done
concurrently or the Ks partition must be included in the loads call as input.

2. The l'S argument is always required when YS is nonblank.

Error Conditions:

None

185

Engineering Application Module: OFPAEROM

Entry Point: OFPARO

Purpose:

This module solves for the static aerc applied loads on the aero boxes and for the displacements on the
aero boxes to satisfy the AIRDISP and TPRESSURE print/punch requests. It loads the OAGRDLOD and
OAGRDDSP relation.

.MAPOL Calling Sequence:

CALL OFPAEg4 (NITER, BC, MINDEX, SUB, GSIZE, GEC*SA, [GTKG], [GSTKG], QDP,
[AIRFRC(MINDEX)], [DELTA(SUB) J, [AICMAT(MINDEX)], [UAG(BC)],
OAGBDLOD, OAGRDDSP);

NITER Design iteration number. (Optional, Integer, Input)

BC Boundary condition number. (Integer, Input)

MIND=X Mach number index associated with the current subscript. (Integer, Input)

SUB Current Mach number subscript number. (Integer, Input)

GSIZE Number of g-set DOF's including any that may have been added by CWR.
(Integer, Input)

GEC(SA A relation describing the aerodynamic boxes for the steady aerodynamics
MODEL. The location of the box centroid, normal and pitch moment axis
are given. It is used in splining the aerodynamics to the structure and to
map responses back to the aerodynamic boxes. (Input)

[GTKG] The matrix of splining coefficients relating the aerodynamic pressures to
forces at the structural grids. (Input)

[GSTKGI The matrix of splining coefficients relating the structural displacements
to the streamwise slopes of the aerodynamic boxes. (Input)

QDP Dynamic pressure associated with the current subscript. (Real, Input)

[AIRFRC (MFlDEX)] Matrix containing the aerodynamic forces for unit configuration parame-
ters for the current Mach number index. If both symmetric and antisym-
metric conditions exist for the Mach number, both sets of configuration
parameters will coexist in AhiFRC. (Input)

[DELTA (SUB)] Matrix containing the set of configuration parameters representing the
user input fixed values and the trimmed unknown values for the SUB sub-
script's trim cases. (Input)

[AICHAT (MINDEX)] Matrix containing the steady aerodynamic influence coefficients for either
symmetric or antisymmetric Mach numbers as appropriate for the sym-
metry of the cases in the current boundary condition. (Input)

[uAG (BC)] Matrix of static displacements for all SAERO subcases in the current
boundary condition in the order the subcases appear in the CASE relation.
(Input)

18

186

S
OAGRDLOD A relation containing the rigid, flexible correction and flexible forces and

pressures for each SAmo subcase for the trimmed configuration parame-
ters. Outputs are for the aerodynamic elements whose TPRESSURE output
was requested in Solution Control. These constitute the loads of the
"trimmed" state of the configuration. (Output)

OAGRDDSP A relation containing the displacements for each SAERO subcase's set of
configuration parameters for the aerodynamic elements whose AIRDISP
output was requested in Solution Control. These constitute the trimmed
displacements of the aerodynamic MODEL. (Output)

Application Calling Sequence:

None

Method:

The CASE relation is rea,, to obtain the list of all SAERO subcases for the current boundary condition.
The AIRDisP and TPRESSURE print/punch requests are checked and the module termina _s if no output
requests exist.

If output is needed, the TRIM relation is read to obtain the subscript values of each subcase. Apartitioning
vector is formed as the TRIM data are searched to extract the proper columns from the UAG matrix for
the subcases associated with the current SUB value. Then, for each subcase to be processed, the particular
print and punch requests are evaluated and, in the most general case, the following are computed:

Rigid Air Loads:

= QDP* [AIRFRC] [DELTA]

Flexible Correction to the Rigid Air Loads:

= QDP* [AICMAT] T [GSTKG]T([UAG]

Total Applied Air Loads:

= Rigid + Flexible

Displacements on the aero boxes

= [GTKG] T [UAG]

where in each case the [DELTA] and [UAG] matrices are partitioned to include only the relevant
subcases for the current subscript.

Finally, the scratch matrices on which these results reside are read and output to the OAGEDLOD and
OAGRDDSP relations for the loads and dispiacements, respectively.

Design Requirement_:

None

Error Conditions:

None

1
187

Engineering Application Module: OFPALOAD

Entry Point: OFPALD

Purpose:

"Solves for the static aero appl.ed loads and sPc forces to satisfy the print/punch requests. The resultant
loads are written to the OGRiDoD relation.

MAPOL Calling Sequence:

CALL OFPLOAD (NITER, BC, MINDEX, SUB, GSIZE, BGPDT(BC), [GTKG], [GSTKG],
QDP, [AIRFRC(MINDEX)], [DELTA(SUB)], [AICMAT(MINDEX)],
[UAG(BC)], [MGG], [AAG ,BC)], [KFS], LKSS], [UAF], [YS(BC)],
[PNSF(BC)], [PGHN(BC)], [PFJK], NGDR, USET(BC), OGRIDLOD);

NITER Design iteration number. (Integer, Input)

BC Boundary condition identification number (Integer, Input)

MInDEX Mach number index for the current subscript value. (Integer, Input)

SUB Subscript number of SAERo subcases considered in this call.
(Integer, Input)

GSIZE Number of degrees of freedom in the g-set including those that may have
been added by DR (Integer, Input)

BGPDT (BC) Relation of basic grid point data for the boundary condition (including
any extra points and GDR scalar points which may be added by the GDR
module). (Input)

[GTKG] The matrix of splining coefficients relating the aerodynamic pressures to
forces at the structural grids. (Input)

[GSTKG] The matrix of splining coefficients relating the structural displacements
to the streamwise slopes of the aerodynamic boxes. (Input)

QDP Dynamic pressure associated with the current subscript. (Real, Input)

[AIRFRC (OMINEX)] Matrix containing the aerodynamic forces for unit configuration parame-
ters for the current Mach number index. If both symmetric and antisym-
metric conditions exist for the Mach number, both sets of configuration
parameters will coexist in AiRFRC. (Input)

[DELTA(SUB)] Matrix containing the set of configuration parameters representing the
user input fixed values and the trimmed unknown values for the SUB sub-
script's trim cases. (Input)

[AICHAT (MIDEX)] Matrix containing the steady aerodynamic influence coefficients for either
symmetric or antisymmetric Mach numbers as appropriate for the sym-
metry of the cases in the current boundary condition. (Input)

[UAG (BC)] Matrix of static displacements for all SAERO subcases in the current
boundary condition in the order the subcases appear in the CASE relation.
(Input)

[MGG] Mass matrix in the g-set. (Input)

188

0
[AAG (BC) I Matrix of accelerations for all SAMO subcases in the current boundary

condition in the order the subcases appear in the CASE relatior.. (Input)
[KFsJ The off-diagonal matrix partition of the independent degrees of freedom

that results from the sPc partitioning. (Input)
[KSS] The dependent DOF diagonal matrix partition of the independent degrees

of freedom that results from the SPC partitioning. (Input)
[UAF] Matrix of free (f-set) static displacements for all sAERO subcases in the

current boundary condition in the order the subcases appear in the CASE
relation. (Input)

[YS (BC) I Vector of enforced displacements for the boundary condition (one column).
(Input)

[PNS•' (BC)I Partitioning vector to divide the independent DOFs into the free and SPC
DOFs. (Input)

[PGM (BC)I Partitioning vector to divide the g-set DOFs into the MPC and inde-
pendent DOF's. (Input)

(PFJK] Pawtitioning vector to divide the f-set DOFs that may include GDR gener-
ated scalar points into the original f-set DOFs.

NGDR Denotes dynamic reduction in the boundary condition.
= o No GDR
= -1 GDR is used
(Input, Integer)

US-T (BC) The unstructured entity of DOF masks for all the points in the current
boundary conditions. (Input)

OGRIDLOD Relation of loads on structural grid points. (Output)

Application Calling Sequence:

Nne

Method:

First the CASE relation entries for SAEmO subcases in the current boundary condition are read. Then the
TRIM relation is read to determine which subcases are associated with the current subscript value. Then
the output LOAD and SPCF print/punch requests are examined to see if any further work is needed. If
no print or punch requests are needed for the subcases associated with the suB'th subscript, control is
returned to the MAPOL sequence.

If SPCF requests exist, the preliminary computations are performed in the ARSpCF module. It computes:

QGV,1] = [KFSJTiUFI + [Fss](yS

for all the appropriate columns of UAF that are associated with the suB'th subscript. The input YS vector
is expanded to contain the correct number of columns.

Then the computation of the applied loads is done. First, the BGPDT data are read and the OQPIDLOD
relation is opened for output. Then the loads fo- each subcase in the subscript is solved for subject to
the existence of a print request for that subcase (either LOAD or SPCF). The following loads are computed:

0
189

Rigid Air Loads on the Structural Grids I
= QDP* [GTKG] [AIRFRC] [IJELTA]

Flexible Correction to the Rigid Air Loads

QjDP* [GTKG] [AIC] TGSTKG]T[UAG]

Total Applied Load

- Rigid + Flexible

Inertial Load

= -MGG3 [AAG]

Where the appropriate inputs are not available, the computations are simply ignored with no warning.
Thus, the optional calling arguments may be used to periorm parts of the computations without
requiring that all pieces be provided.

Then, the output LOADs matrices are opened and the CASE LoADs print and punch requests are used to
load the OGRIDLOD relation with the RIGID, FLEXIBLE, APPLIED and INhERTIA loads.

Finally, if any SPCF output requests exist the APPLIED loads that were computed are combined with
the QWG terms to result in the sPc reaction forces:

[SPCF] - [QGV1] - (Applied load]

For each DOF for which sPc forces have been requested. E
Design Requirements:

1. sPc force computations for other disciplines occur in the OFPSPCF module.

2. Only those arguments that are present will be used. If data are missing, the dependent terms will be
omitted from the output.

Error Conditions:

None

S190

* Engineering Application Module: OFPDISP

Entry Point: OFPDSP

Purpose:

To print selected displacements, velocities and/or accelerations from any analyses in the current
boundary condition.

MAPOL Calling Sequence:

CALL OFPDISP (NUMOPTBC, BC, NITER, GSIZE, BGPDT(BC), ESIZE(BC), PSIZE(BC),
OGRIDDSP, [UG(BC)], [AG(BC)], [MAG(BC)], [AAG(BC)], [BLUG],
[BLUE], [UTRANG], [UTRANE], [UFREQG], [UFREQE], LAMBDA,
[PHIG(BC)], [PHIBG(BC)], LSTFLG);

NUMPTBC Number of optimization boundary conditions (Integer, Input)

BC Boundary condition identification number JInteger, Input)

NITER Iteration number for the current design iteration (Integer, Input)

GSIZE The size of the structural set (Integer, Input)

BGPDT (BC) Relation of basic grid point coordinate data (Input)

ESIZE (BC) The number of extra point degrees of freedom in the boundary condition
(Integer, Input)

PSIZE (BC) The size of the physical set for the current boundary condition.
(Integer, Irput)

OGRIDDSP Relation for storage of displacement data (Input)

[UG (BC)] Matrix of global displacements from STATICS analyses (Input)

[AG (BC)] Matrix of global accelerations from STATICS analyses (Input)

[UAG (BC)] Matrix of global displacements from sAERo analyses (Input)

[AAG (BC)] Matrix of global accelerations from SABRo analyses (Input)

[BLUG] Matrix of global displacements/velocities/accelerations for BLAST re-
sponse analyses (Input)

[BLUE] Matrix of extra point displacements/velocities/ accelerations for BLAST re-
sponse analyses (Tnput)

[UTRANG] Matrix of global displacements/velocities/ accelerations for TRANSIENT re-
sponse analyses (Input)

[UTRANE] Matrix of extra point displacements/velocities/ accelerations for TRAN-
SIENT response analyses (Input)

[UFREQG] Matrix of global displacements/velocities/ accelerations for FQUENC! re-
sponse analyses (Input)

[UFREQE] Matrix of extra point displacements/velocities/ accelerztionP for FRE-
QuENCY response analyses (Input)

LAMBDA Relational entity containing the output from the real eigenanaly.aii
(Input)

191

[PRIG (BC) I Matrix of global eigenvectors from real eigenanalysis for MODES analyses(Input)

[PRIGB (BC)] Matrix of global eigenvectors for BUCKLING analyses (Input)

LSTFLG Integer flag to indicate if for last iteration output only (Integer, Input)
= 1 for last it eration only
= 0 other general cases

Application Calling Sequence:

None

Method:

The module begins by reading the CASE relation nodal response quantity print options for the current
boundary condition. The following print requests are treated in the OFPDISP module:

(1) DISPLACF-AENT

(2)vWLoci y

(3) ACcELERATION

(4) ROOTS (for normal modes analyses)

As the CASE data are searched, the FLTFLG and MODFLG logicals are set to TP.UE if either FLUTTER or
MODES disciplines are associated with these print requests. If no prints are requested, the module
terminates, otherwise, the ITERLIST, GRIDLIST, MODELIST, TIMELIST and FREQLXsT data are
prepared for easy retrieval in determining which nodes and subcases are requested in each case.

The BGPDT data are then read into open core and the number of extra point degrees of freedom in the
current boundary condition is determined. Finally, the code checks to see if any flutter displacements
(eigenvectors) have been requested for an optimization boundary condition. If so, the request is explicitly
turned off since ASTROS does not compute the eigenvector for optimzation boundary conditions. The
next segment of code is set aside for special discipline dependent processing. In this module, the flutter
eigenvector print requires the transformation of the modal participation factors for any flutter eigen-
vectors into physical coordinates using the input PRIG matrix and the FLUTREL and FLu• 2ODE entities
that were created in the FLTTRMAN module. Again, if no flutter conditions were found in the analysis,
the module explicitly turns off the print request. Otherwise, the physical mode shape is computed and
stored in a pair of scratch entities: one for the structural degrees of freedom and one for the extra point
degrees of freedom.

The main loop in the module now begins. This loop is over all the disciplines that have nodal response
quantities. For each discipline, there is a loop over all the CASE tuples retrieved at the beginning of the
module. Only those CASE tuples matching the current discipline are treated at each pass of the outermost
loop. The DSPSUB submodule is called for each CASE tuple to determine the number and identification
numbers for each subcase for which output is desired. Asubcase is considered to be one displa'ýementlve-
locity/acceleration vector for a particular time step, frequency step, load condition, etc. Then, depending
on the nature of the discipline, one of five print routines is called to read into memory the proper nodal
vector and print the terms to the user output file. Once all the subcases for the current CASE tuple have
been processed, the CASE tuple loop continues for the current discipline. When all disciplines or all CASE
tuples have been processed, the module terminates.

192

",• Design Requirements:

1. The oFPDISP module is designed to be called at the conclusion of the boundary condition loop when
all the physical nodal response quantities have been computed for all the analyzed disciplines.

Error Conditions:

None

193

Engineering Application Module. OFPDLOAD

Entry Point: OFPDLD

Purpose:

Processes the solution control load output requests for the current boundary condition for dynamic loads
(transient, frequency and gust) and stores the loads on the physical degrees of freedom to the OGRIOLOD
relation for those subcases and grids selected in solution control.

MAPOL Calling Sequence:

CALL OFPDLOAD (NITER, BC, BGPDT(BC), PSIZE(BC), ESIZE(BC), [PHIG(BC)],
[PTGLOAD], EPTHLOAD], [PFGLOAD], [PFNLOAD], OGRIDLOD);

NITER Current design iteration number, (Integer, Input)

BC CuiTent boundary condition number. (Integer, Input)

BGPDT (BC) Relation of basic grid point data for the boundary condition (including
any extra points and GDR scalar points which may be added by the GDR
module). (Input)

PSIZE (BC) The size of the physical set for the current boundary condition.
(Integer, Input)

ESIZE (BC) Number of extra poin- DOFs defined for the boundary condition.
(Integer, Output)

[PHIG iBC)] Matrix of normal mode eigenvectors in the structural g-set (Input)

EPTGLOAD] Matrix of g-set applied dynamic loads for the direct transient analyses in
the current boundary condition. (Input)

[PTELOAD] Matrix of h-set applied dynamic loads for the modal transient GUST analy-

ses in the current boundary condition. (Input)

[PFGLOAD] Matrix of g-set applied dynamic loads for the direct frequency analyses in
the current boundary condition. (Input)

EPFELOADI Matrix of h-set applied dynamic loads for the modal frequency analyses
with GUST in the current boundary condition. (Input)

OGRIDLOD Relation of applied loads on structural grid points. (Output)

Lkpplication Calling Sequence:

None

Method:

The CASE relation is read for all transient and frequency response analysis and the LOADPRWT print and
punch requests for LoAns are examined. If any requests exist, processing conunues by opening the BGPDT
and reading the internal/external point identifications to allow storing the matrix data or the OGRIDLOD
relation labelled with the external ids.

194

If any GUST loads are requested the nAal dvramic loads are transformed to the physical degrees of
freedom as:

[PGUSTT] = [PHIG] [PTu•LO.It for tran ient, gust
[PGUSTF] =- [PHIG] [PFHLOADý for har7'd 'ic f-ust

To perform these operations, the normal modes muAt bx e -)anded to include extra points for the single
subcase of transient and or frequency that is aiowed. •h•,-,1 the multiplications are performed.

Finally, once all the direct matrices are available, the c•um control print requests are processed, the
corresponding columns are identified by interpreting the T.1 or wREQ options and the GRIDLIST data
arc read to determine which points are chosen. The verus arm .he, ,-ritten to the OGRIDLOD relation as
APPLED loads.

Design Requirements:

None

Error Conditions:

None

195

Engineering Application Module: OFPF DR

Entry Point: OFPEDR

Purpose:

'lb print selected element stress, strain, force and/or strain energies from any analyses in the current
boundary condition.

MAPOL Calling Sequence:

CALL OFPEDR (BC, HSIZE(BC), NITER, LSTFLG);

BC Boundary condition identification number (Integer, Input)

ESIZE (BC) Number of modal dynamic degrees of freedom in the current boundary
condition (Input)

HITMR• Iteration number for the current design iteration (Integer, Input)

LSGFLG Integer flag to indicate if for last iteration output only (Integer, Input)
= 1 for last iteration only
= 0 other general cases

Application Calling Sequence:

None

Method:

The module begins by reading the CASE relation element response quantity print options for the current
boundary condition. The following print requests are treated in the OFmER module:

(1) sTMiSS

(2) STRNz

(3) F-oRcE

(4) ENERGY

If no prints are requested, the module terminates, otherwise, the ITE1LIST, ELEMLIST, XODELIST,
TnSLIST and nEQLIST data are prepared for easy retrieval in determining which elements and
subcases are requested in each case. The main loop in the module now begins. This loop is over all the
disciplines that have element response quantities.

For each disciplii_ , there is a loop over all the CasE tuples retrieved at the beginning of the module.
Only those CASE tupies matching the current discipline are treated at each pass of the outermost loop.
The o•sus submodule is called for each CASE tuple to determine the number and identification
numbers for each subcase for which output is desired. A subcase is considered to be one displacement
vector for a particular time step, frequency step, load condition, etc. For each subcase, the set of element
response print utilities (one for each element type) are called for each of the four quantities that can be
printed. If the strain energy is requested, the oFPESE submodule is called to compute the total strain
energy f&r the current displacement field as a preface operation prior to the element dependent print
routines. Once all the quantities for all the subcases for the current cAsE tuple have been processed,
the CASE tuple loop continues for the current discipline. When all disciplines or all CASE tupleb have
been processed, the module terminates.

196

. Desian Re•quirements:

1. The OWER module is designed to be called at the conclusion of the boundary condition loop when
all the physical nodal response quantities have been computed for all the analyzed disciplines.

2. The EDa module must have been called to store the computed element response quantities onto the
EO==c entitie0 which are read by the OFDR module.

Error Conditions:

None

197

Engineering Application Module: OFPGRAD

Entry Point: OFPGRA

Purpose:

Stores the dzta necessary to satisfy the solution control print and punch requests OGRADIENT and
CGEADIENT (c;bjective function gradient and constraint gradient, respectively).

MAPOL Calling Sequence:

CALL OFPGRAD (NITER, NUMOPTBC, [ANATJ, GLEDES, CONST, GRADIENT);

NITER Design iteration number. (Integer, Input)

NUMOPTBC Number of optimization boundary conditions. (Integer, Input)

[AMAT] The matrix of constraint gradients for active constraints in the current de-
sign iteration. (Input)

GLBDES The relation of giobal design variable values and objective function sensi-
tivities for all design iterations that have been analyzed. (Input)

CONST The relation cf applied design constraints for all design iterations. (Input)

GRADIENT The relation of output constraint gradients for the requested constraints
and design variables that satisfy the Solution Control CGiADTzNT and
OGEADIENT output requests. (Output)

Aplication Calling Sequence:

None

Method:

The OPTIMIZE relation is read to determine if and OGEADIENT or CGRADIENT print or punch requests
exist. If they do, processing continues by determining if this iteration is in the set of iterations selected.
If it is, the the AMAT matrix is opened and read into memory as are the GLBDES entries for the current
iteration. The CONST relation is read into memory and reordered to match the AMAT matrix. Then the
GRADIENT entity is loaded with the objective or constraint gradient termrs for the requested constraints
and global design variables.

Design Requirements:

None

Error Conditions:

None

198

Engineering Application Module: OFPLOAD

Entry Point: OFPLOD

Purpose:

Tb print selected applied external loads from any analyses in the current boundary condition.

MAPOL Calling Sequence:

CALL OFPLOAD (N OPTBC, BC, NITER, GSIZE, BGPDT(BC), PSIZE(BC), [PG],
TRMTYP, QDP, EGTKG], [AIRFRC (MINDEX) I, (DELTA]) ;

NMOPTBC Number of optimization boundary conditions (Integer, Input)

Bc Boundary condition identification number (Integer, Input)

NITER Iteration number for the current design iteration (Integer, Input)

GSIZE The size of the structural set (Integer, Input)

BGPDT (BC) Relation of basic grid point coordinate data (Input)

PSIZE (BC) The size of the physical set for the current boundary condition.
(Integer, Input)

[PG] Matrix of applied loads for STATICS analyses in the current boundary
condition (Input)

TmETP The trim type for the steady aeroelastic analyses 0 0 zero degree of free-
M dom trim - 1 lift only trim - 2 lift/pitching moment trim (Integer, Input)

QDP Dynamic pressure for the SAERO analyses in the current boundary condi-
tion (Real, Input)

[GTKG] Matrix containing the steady aerodynamic spline in the structural set
(Input)

[AIRFRC (MINDEX) i Matrix containing the aerodynamic forces for unit configuration parame-
ters for the current Mach number and Symmetry (Input)

[DELTA] Matrix containing the configuration parameter values resulting from the
current trim condition (Input)

Application Calling Sequence:

None

Method:

The module begins by reading the CASE relation applied load print options for the current boundary
condition. The LOAD print requests are treated in the OFPLOAD module for all ASTROS disciplines. As
the CASE data are searched, the AROFLG logical is set to TRUE if any SAERO cases with a TENTP greater
than zero are found. If no prints are requested, the module terminates, otherwise, the GRIDLIST,
MODELIST, TIMELIST and FEEQLIST data are prepared for easy retrieval in determining which nodes
and subcases are requested in each case. The BGPDT data are then read into open core and the number
of extra point degrees of freedom in the current boundary condition is determined. The next segment of
code is set aside for special discipline dependent processing. In this module, the steady air loads
associated with TRIM analyses must be computed from the AIRFEC matrix of loads due to "unit"
configuration parameters and the DELTA matrix of trimmed configuration parameters. The result must

199

then be splined to the structural degrees of freedom using the GTKG spline transformation matrix. The
structural applied loads are stored in a scratch entity for use in the subsequent print processing. The
main loop in the module now begins. This loop is over all the disciplines that have applied loads. For
each discipline, there is a loop over all the CASE tuples retrieved at the beginning of the module. Only
those CASE tuples matching the current discipline are treated at each pass of the outermost loop. The
LODSUE submodule is called for each CASE tuple to determine the number and identification numbers
for each subcase for which output is desired. Asubcase is considered to be one load vector for a particular
time step, frequency step, load condition, etc. Then, depending on the nature of the discipline, one of
two print routines is called to read into memory the proper vector and to print the terms to the user
output file. Once all the subcases for the current CASE tuple have been processed, the CASE tuple loop
continues for the current discipline. When all disciplines or all CASE tuples have been processed, the
module terminates.

Design Requirements:

1. The OFPLOAD module is designed to be called at the conclusion of the boundary condition loop.

Error Conditions:

None

200

200

OEngineering Application Module: OFPMROOT

Entry Point: OFPH'1RT

Purpose:

Processes the solution control normal modes root output requests.

MKPOL Calling Sequence:

CALL OFPMROOT (NITER, BC, NDMOPTBC, LAMBDA, LASTFLAG);

NITER Current design iteration number. (Integer, Input)

SC Current boundary condition number. (Integer, Input)

NUI)PTBC The number of optimization boundary conditions. (Integer, Input)

LAMBDA The relation of normal modes eigenvalues for all boundary conditions and
design iterations. (Input)

LASTFLAG An optional argument which, if nonzero, implies that the call is being
made only to satisfy ITER-LAST print or punch requests. (Integer, Input)

Application Calling Sequence:

None

Method:

The CASE relation is read to obtain the print/punch requests for ROOTS. If any requests exist, they are
processed. If the LASTPLAG is nonzero, only those requests in which the ITER-1AST flag is set in the
ROOTPRNT CASE relation attribute are considered.

For the modes selected by the MDELIST, the OEIGS and LAMBDA entities are read and the eigenvalue
extraction summary table and the extractedi eigenvalues are printed to the output file. Punch requests
are ignored since the data are 8tored already on the LAMBDA relation.

Design Requirements:

None

Error Conditions:

None

201

Engineering Application Module: OFPSPCF

Entry Point: OFPSPF

Purpose:

Recovers single-point forces of constraint and loads the resialts to the OGRIDLOD relation

MAPOL Calling Sequence:

CALL OFPSPCF (NITER, BC, DISC, CMPLX, GSIZE, ESIZE(BC), NGDR, [KFS], [KSS],
(UF], [YS(BC)], [PSI, [PNSF(BC)], [PGWN(BC) , [PFJK],
[PHIG(BC)J, [PGLOADJ, [PHLOAD], BGPDT(BC), OGRIDLOD);

NITER Current design iteration number. (Optional, Integer, Input)

BC Current boundary condition number. (Integer, Input)

DISC Integer key indicating the discipline whose SPC forces are to be recovered.
=1 for statics
=2 for modes
=4 for flutter
-5 for transient analysis
-6 for frequency analysis
-8 for nuclear blast
Note that static aeroelasticity (DISC-3) is supported in the OQPALOAD
module. (Integer, Input)

CMPLX Integer flag indicating whether the discipline's displacement field is real
(=1) or complex (=2). (Integer, Input)

GSIZE Number of degrees of freedom in the g-set including those that may have
been added by GDR (Integer, Input)

ESIZE (BC) Number of extra point DOFs defined for the boundary condition. (Integer,
Output)

NGDR Denotes dynamic reduction in the boundary condition.
= 0 No GDR
= -1 GDR is used
(Input, Integer)

.S3] The off-diagonal matrix partition of the independent degrees of freedom
that results from the sPC partitioning. (Input)

(KSS] The dependent DOF diagonal matrix partition of the independent degrees
of freedom that results from the SPC partitioning. (Input)

CUF] Matrix of free (f-set) static displacements for all the DISC subcases in the
current boundary condition in the order the subcases appear in the CASE
relation. (Input)

[YS (BC)] Vector of enforced displacements for the boundary condition (one column).
(Optional, Input)

[PSI Matrix of static loads applied to the sPc DOF's (Partition of the free DOF
loads matrix) (Optional, Input)

[PNSF (BCfl Partitioning vector to divide the independent DOFs into the free and SPC
DOFs. (Input)

202

[PWdN (BC) I Partitioning vector to divide the g-set DOFs into the MPC and inde-
pendent DOF's. (Input)

[PFJJK Partitioning vector to divide the f-set DOFs that may include GDR gener-
ated scalar points into the original f-set DOF's. (Optional, but required if
NGDR <>0; Input)

[PHIG (BC)] Matrix of normal mode eigenvectors in the structural g-set
(Optional, Input)

[PGLOAD] Matrix of g-set applied dynamic loads for the direct transient or fre-
quency analyses (as appropriate for DISC) in the current boundary condi-
tion. (Optional, Input)

[PHLOAD] Matrix of h-set applied dynamic loads for the modal transient or fre-
quency GUST analyses (as appropriate for DISC) in the current boundary
condition. (Optional, Input)

BGPDT (BC) Relation of basic grid point data for the boundary condition (including
any extra points and CDR scalar points which may be added by the GDR
module). (Input)

OGRII DLOD Relation of loads on structural grid points. (Output)

Application Calling Sequence:

None

, Msthod:

This module computes the SPC reaction forces for all disciplines in ASTROS except SAERO and NPSAERO.
ziiSnERo has no structural loads and the SAERO SPC forces are computed in the oFPAWAD module where
the applied loads (an input to the sPc computations) are computed.

First the CASE relation is read for all entries with a DI SFLAG of DISC for the current boundary condition.
Then the SPCF print requests are examined to determine if any output is needed for this discipline,
design iteration, etc. If not, the module terminates otherwise computations continue with the creation
of scratch entities to hold the constituent parts of the sPc calculations. The BGPDT data are read into
memory and the OGRIDLOD relation is opened in preparation for output.

The existence of enforced displacements, Ys and loads on the sPc dofs, Ps is checked and logical flags
are set for downstream computations. If cR was used (as indicated by NGDR <>0), the PFJK partition
matrix is used to extract the original f-set DOF from UF from the input set which includes aoR scalar
points.

Then some discipline dependent processing takes place. L DISC = 4 (FLUTTER), the FmODE hidden
entity is read and the flutter eigenvectors (if any) are read, stripped of the extra point degrees of freedom
and reduced to the f-set. Transient and frequency disciplines require special processing because of the
nature of the displacement matrices (containing velocities and accelerations). This processing is done
in DYSPCF and results in a g-set sized matrix of the loads applied to the SPC DOFs for each time or
frequency step. GUST loads are treated here to recover the direct applied loads from the PHLOAD input.
Extra points are partitioned out of these loads matrices if needed.

Then the actual recovey process begins. First the QSV matrix of sPc forces are computed from ths
appropriate constituent terms

[pasv] , [Fs]T(UFI + [KSS]ys} - {PS}

203

where YS has been expanded to have the appropriate number of columns and the proper terms are
ignored if YS or Ps is blank or empty.

Then the QSv matrix is expanded to the g-set, the nonzero terms are read and compared to the output
requests and the appropriate terms are loaded to the OGRIDLOD relation. For the dynamic response
disciplines, the applied loads PS are extracted from the g-set output of the DYSPCF submodule and the
reaction forces are adjusted accordingly.

Desigg Requirements:

1. SAFM single point constraint reactions are computed in the orPAWAD module where the applied
loads are computed.

Error Conditions:

None

204

* Engineering Application Module: PFBULK

Entry Point: PFBUJLK

Purpose:

Tb perform a number of preface operations to form additional collections of data and to make error checks
not done in IFP to identify input errors before costly analyses are performed.

MAPOL Calling Sequence:

CALL PFBULK (GSIZEB, EOSMRYM, EODISC, GPFELEM);

GSIZEB Length of the g-set vectors (Integer, Input)

EOSUMOMY Relational entity containing the summary of entities for which element re-
sponse quantities are desired (Output)

EODISC Unstructured entity referred to by an attribute of EOSUMMRY containing

the set of disciplines and subcases for the element response quantities

GPFELW Relational entity containing the set of elements connected to grid points
for which grid point forces are desired (Output)

Application Calling Sequence:

None

Method:

The module performs tests on selected bulk data entities to see if they contain data. If they do, the
indicated subroutine is called to generate further data and perform error checks:

BULK DATA SUBROUTINE GENERATED ENTITY

TEMP, TEHPD PRE-M GRIDTEMP

FMEQ, fMEQ1, -e-EQ2 PREFRQ FREQL

TSTEP PRETST OTL

The module also checks that constraint requests tpecified in the FLUTTER solution control command
have corresponding DCONFLT bulk data entries.

As a final step, the PFBU module performs the preliminary processing of solution control print requests
that depend on elements. These include all the element response quantities (i.e., stress or strain) and
the grid point force balance. The first stage is performed in the PREGPF submodule which builds the
GPFEIz2 relation from the element connectivity data and the sets of nodes for which a force balance in
requested. Then the PREnR submodule is called to build the EOSUmYRY and EODISC entities which list
those elements for which element data recovery should be performed in the EDR module. These entities
are also used in OFPEMR to direct the printing of the computed quantities.

0

205

Design Requirements:

1. This is a preface module that called after EiG and bUMST

Error Conditions:

None

206

* Engineering Application Module: QHHLGEN

Entry Point: QHHGEN

Purpose:

To compute the discipline dependent unsteady aerodynamic matrices for gust analyses in the modal
dynamic degrees of freedom.

MAPOL Calling Sequence:

CALL QHHLGEN (BC, ESIZE(BC), rQKKL], [QKJL], [UGTKA], [PHIA], [PRIKH],
(QUELl, (QHJL]);

BC Boundary condition identification number (Integer, Input)

ESIZE (BC) The number of extra point degrees of freedom in the boundary condition
(Integer, Input)

(QKKL] Matrix list containing the matrix product:

SKJ][AJJ T] -T([DlJK] + ik D2JK])

used for flutter and gust analyses (Input)
(Q'7LI Matrix list containing the matrix product:

'sKj] [AJjT]
used for gust analyses (Input)

[UsGTKA] Matrix containing the unsteady aerodynamic spline in the analysis set
(Input)

[PHIA] Matrix containing the real eigenvectors in the analysis set (Input)

[P01KB] Matrix containing the matrix product:

[UGTKA]EPHIA]
with the analysis set expanded to include extra points (Output)

[QEML] The modal unsteady aercdynamic influence coefficients for gust (Output):

[PHIKH]T [QKX] [P]I3EH]

WQaJn] The modal unsteady aerodynamic influence coefficients for gust:
[PHIKH]T[QKJ] (Output)

Application Calling Sequence:

None

Method:

The QHLLUN module begins by retrieving all the CASE tuples for the current boundary condition. The
number of gust options on transient or frequency response disciplines are counted to determine what
actions are required by the module. If gust conditions do not exist, control returns to the executive. If
QZHB and Qgi are required, the module continues by reading the BGDT data to determine the size of
the direct dynamic degrees of freedom including extra points. If extra points exist, the normal modes
and the unsteady spline matrix (input in the analysis set) are expanded to include the extra point degrees
of freedom. The module then computes the PHIKS matrix of structural mode shapes splined to the
aerodynamic degrees of freedom. QHLL=N then calls the PRUIz utility to prepare the utm data for

207

the discipline dependent unsteady aerodynamic matrices. The total number of m-k/symmetry sets i
associated with the Q=K matrix are computed and the requisite memory for the subsequent computations
is obtained. The module then proceeds with the premultiplication of the QIK matrix list by the P01KB
matrix:

[QHKL] = [PHIKE] [QKKL]

The QHLL output matrix is then flushed and computed using one of two paths. If there is only one
m-k/symmetry set (which is very rare), the QHLL matrix may be formed by a post-multiplication of QHKL
in one step. If more than one matrix is in the QME matrix list, however, the module extracts each matrix
individually using the EXQKK utility and performs the multiplication:

[QZHH] = [QEK] [PHIKH]

and appends the resultant matrix onto QELL.

The matrix QHJL is also output. Since this matrix only requires a premultiplication of the input QKJL
matrix list by PaIno, it is performed in one step and the module terminates.

Desin Requirements:

1. The UNSTEADY module must have been executed to generate the aerodynamic matrices and generate
the IOM entity.

Error Conditions:

None

208

Engineering Application Module: RBC-ECK

EntryPoint: RDGC.HK

Purpose:
To compute the iigid body strain energies associated with displacements of each support degree of
freedom.

MAPOL Calling Seque -.,ce:

CALL RBCHECK (BC, USET(BC), BGPDT(BC), [D(BC)], [KLL], [KRR], EKLR]);

BC Boundary condition number. (Integer, Input)

USET (BC) The unstructured entity defining structural sets (Input)

IKLL, The stiffness matrix in the 1-set degrees of freedom (Input)

[ERR] The stiffness matrix in the r-sgt degrees of freedom (Input)

IKRI The off-diagonal l-r partition of tbh a-set stiffness matrix.(Input)

Application Callin unce:

None

Method:

The1mBcHCK module begins by checking if the USET entity contains any support (r-set) degrees of
freedom. If not, the module returns. The module continues by reading the BGPDT into memory and ther.
computing the strain energy associated with the rigid body displacements:

[X] = [KLR. T ED] + [MRR]

The x and 1W matrices are then read into memory and two normalization measures are computed. The
first is the overall norm of each matrix:

nr nrXnorm = I IYq
i=1 j=1

nr nr
KR=Rnorm = Y- KRP1

t=1 j-1

Xnorm
ematrix - RnmERRnorm

The second is the norm of each of the nr columns:

nr

Xjflorm = 11 WjXj

nr

KRRJ~ = KRRij

i=2

209

ECol -- Ra 7no•w

These eiror ratios and norms are then printed out along with the associated diagonal of x (the strain

energy) for each support degree of freedomn.

Design R2Iuirements:

None

Error Conditions:

None

210

Engineering Application Module: RECOVA

Entry Point: RECOVA

Purpose:

To recover the symmetric or asymmetric f-set displacements or accelerations if there are omitted degrees
of freedom.

MAPOL Calling Sequence:

CALL RECOVA ([UAJ, [P0], [GSUBO(BC)], NRSET, [AA], [I!M(BC) J, SYM,
[KOOINV(BC)], [KOOU(EC)], [PFOA(BC)], [UF]);

[UAI Matrix of displacements or accelerations in the analysis set (Input)

[PO] Optional matrix of static loads applied to omitted degrees of freedom
(Input)

(GSUBO (BC)] Static condensation transformation matrix (Input)

NRSET Flag indicating that inertia relief effects are to be included (Integer, Input)

[AA] Optional matrix of analysis set accelerations for inertia relief (Input)

(IPM (BC)] Optional matrix containing terms needed for inertia relief (Input)

SYM Optional symmetry flag-, =1 if any xF" is not symmetric (Integer, Input)

[KOOINV (BC)] Matrix containing the inverse of Koo for symmetric stiffness matrices or
the lower triangular factor of Koo for asymmetric matrices (Input)

[KOOU (BC)] Optional matrix containing the upper triangular factor of KO0 for asym-
metric stiffness matrices (Input)

[PFOA (BC)] The partitioning vector splitting the free degrees of freedom into the
analysis set and the omitted degrees of freedom (Input)

(UF] Matrix containing the displacements or accelerations for the free degrees
of freedom (Output)

Application Calling Sequence:

None

Method:

Thb RECOVA module begins by checking if the P0 argument is nonblank. If so, the displacements at the
omitted degrees of freedom due tp the loads at the omitted degrees of freedom, uoo, are computed. These
computations depend on whether inertia relief and/or asymmetric stiffnesses exist. If inertia relief is
required (NRSET > 0) the loads on the omitted DOF's are modified using the IFX matrix and the analysis
set accelerations, AA; both of which must be input:

[P0] - [P0] - [IFM] [AK]

The U00 terms are then computed from the inverted Koo terms based on the SYM flag; with the symmetry
flag indicating whether the general or symmetric forward backward substitution is used:

[U00] - (KOOl 1 [PO] using Forward Backward Substitution

0

211

Vinally, the omitted displacements, uo, are computed from: I
(uo] - [GSUBO] (UA] + (uoo]

Note that the module assumes that the correct set of KooInV, Koou, IiK, Ak and PO matrices are
supplied to match the sy and NRSET flags. If the Po argument is omitted from the calling sequence,
the uo terms are computed directly from:

(uo] - [GStBo] (UA]

with the GStmO argument required to perform the computation. Note that these computations are the
same irrespective of the NRSET flag. When uo is complete, the module merges the computed uo terms
with the supplied UA terms to form the OF output.

Design Requirements:

None

Error Conditions:

None

2

212

, Engineering Application Module: SAERO

Entry Point: SAERO

Pur~pose:

7b solve the trim equation for steady aeroelastic Lrim analyses and to compute the rigid and flexible
stability coefficients for steady aeroelastic analyses and the aerodynamic effectiveness constraints for
constrained optimization steady aerodynamic analyses.

MAPOL Calling Sequence:

CALL SAERO (NITER, BC, IMINDEX, SUB, SYM, QDP, STABCF, BGPDT (BC) ,
[LHSA(BC,SUB)], [RHSA(BC,SUB)], [AAR], [DELTA(SUB)], [PRIGID],
ER33], CONST, AEFLG(SUB), [AARC], [DELCI);

NITER Design iteration number (Integer, Input)

BC The current boundary condition (Integer, Input)

MINDEX Mach number index for the current subscript value. (Integer, Input)

SUB Subscript number of SAERO subcases considered in this call.
(Integer, Input)

SYM The symmetry flag for the current SAERO subcases (Integer, Input)

QDP Dynamic pressure associated with the current subscript. (Real, Input)

STABCF Relation of rigid stability coefficient data (Input)

BGPDT (BC) Relation of basic grid point coordinate data (Input)

[LESA (BC,SUB)] Matrix of modified inertia coefficients (Input)

[RHSA (BC,SUB)] Matrix of applied load vectors reduced to the r-set (Input)

[AAR] Matrix of acceleration vectors (Output)

[DELTA (SUB)] Matrix of configuration parameters (Output)

[PRIGID] Rigid load matrix (Input)

[R33] Reduced rigid body mass matrix (Input)

CONST Relation of constraint values (input)

AEFLG (BC) The logical flag denoting presence of aeroelastic constraints
(Logical, Output)

[AARC] Matrix of structural accelerations due to unit configuration parameters
for use in sensitivity evaluation (output)

[DELC] Matrix of "unit" flight configuration parameters used to generate the
AARc accelerations (output)

213

Avplication Calling Sequence:

None

Method:

The module begins by bringing into memory the CASE entries associated with SAmRo subcass in the
current boundary condition. Then, the STABCF relation is read into memory for the current MINDMX
value. The TRIM relation is read for all entries that have the current subcript value and other trim data
from AEROS, COmEFFS, and Com m are also read into memory.

Then an evaluation of the trim data is done to determine the number of trim subcases that will be solved
during this pass (for the current subscript). The ARoCEM utility is used to evaluate the SUPORT condition
to ensure (again) that it satisfies the requirements of the TRI solver and to get the names and DOFs
of the supported degrees of freedom. Then, after creating needed scratch entities, the grand loop on the
trim subcases begins.

Each trim subcase must be solved separately because of the options for control effectiveness and control
linking. The first step is to determine which TRIM entries are associated with the current subcase (note
all are associated with tho current subscript). Once the TRM id of the current case is known, the CAsE
relation data are searched to determine the subcase number (1 to n over all sAIRO entries in CAsE for
each BC). Then the ARoL routine is called to assemble a linking matrix of control effectiveness factors
and linking relationships for the current subscript such that:

(- [TLINK] * DELRED

where the DELMED matrix is reduced to only the active trim parameters and the effectiveness factors
have been included. Then the rigid and flexible loads are hit with the linking matrix to reduce the
problem to the relevant configuration parameters:

P2RED = P2 * TLINlK

RHSRED R EHS * TLINK

P2PXD and RHSRED contain one row for each structural acceleration and one column for each label on
the trim entry This means that the total number of stability parameters (either fixed or free) is the
number of columns in P2 and sHs. Further, the order of the parameters is the order given on the TRIM
tuples.

Now the trim equations can be assembled. From the input, we have the relationshipLv LsEff SaSfk[Arfrft _ [Rs fu FSr.1 [rDW.
LESkf LHSkkJ LAR.kJ-J RESU RHSk DLS

Where: Represents:

F+K Number of SUPORT point DOFs

F Set of free accelerations, AR

K Set of knovm(FIYXE) accelerations, AR
U+s Number of AERo parameters

U Set of unknown parameters

S Set of set(FIXzD) parameters

214

These equations must be rearranged to get free accelerations and unknown delta's on the same side of
the equation:

LEsff -BEssf1 [Afreel _ -LE kk iwSkaj [1R)

[E5 uf -RuS.,j L DEL-J I LL'HS~k RBS2JL[DEL J

and we must handle the degenerate case where all accelerations or all delta's are known.

Following rearrangement of the equations, the unknowns are solved for in the ARTRMS/D routine. First
tht rigid masses and loads, P2MM and MR are used to obtain the rigid trim and then the flexible inputs
RHSPM and Las are used for the "real" solution.

Then, the flexible results are unscrambled and the rigid body accelerations (either input on the TRIM
or output frcm the solution of the above) are stored on the Am matrix and the same is done with the
trim parameters after the TLINK matrix is used to recover the full vector from the reduced set. Then
the results for the rigid and flexible trim are printed.

Only if the print i; requested or if constraints are applied are the stability zoefficients computed. These
data are recomputed in each subcase because the effectiveness terms affect the stability derivative
outputs. Tho ARSCFS/D module is called to compute the flexible data from the forces on the support
degrees of freedom due to the unit configuration parameters:

[F] = [FIRR) [LES] -1[RES]

The P? matrix contains the same information for the rigid aerodynamic loads (computed in the MAPOL
sequence). These data are then normalized and the stability coefficient table stored into memory. Once
complete, the stability coefficient table is printed using the effectiveness factors and linking terms to
assemble the "dependent" coefficients and factor all coefficients according to the user input.

Finally, using the in-core table of derivatives, the ARCONS/D submodule is called to evaluate the
constraints for the -urrent subcase. These constraints are evaluated from the stability coefficient table
but, to prepare for eventual sensitivity computations, the additional outputs AEFLG, AARC and DELC ai e
needed The first is a logical flag to indicate to the MAPOL sequence that the AARC and DELC matrices
are f•1 The ¢C matrix and DELC matrix contain one or more columns for each constraint (appended
in the order the constraints are evaluated). The Amc contains the accelerations of the support DOFs
due to the unit configuration parameter vectors in DELC. This pair of matrices will allow the computation
of the derivative of the accelerations due to the unit parameters which is an essential ingredient in the
sensitivity computation.

For lift effectiveness constraints

AARC - 1 column due to unit ALPHA

DELC - 1 column containing a unit ALPHA with all others 0.0

For aileron effectiveness constraints

Amc- 2 columns; the first for unit SURFACE rotation and the second for unit roll rate (PRa.TE).

DELC - 2 columns containing a unit rotation of the named SURFACE and the second a unit MATE

For stability coefficient constraints (DCONSCF)

AARC - 1 column due to unit PARAMTER where PA IHETER is that named on the constraint entry

DELC - 1 column containing a unit PARA•MTER with all others 0.0

215

DCONTMR4 are evaluated at this time, but do not require any pseudodisplacements for sensitivity
evaluation. The pseudodispiacements are those which arise due to the unit accelerations that arise due
to unit configuration parameters.

After the stability coefficients (and constraints) are computed and printed, the rigid and flexible trim
results are printed and the module repeats the entire process for all the subcases that are associated
with the current susscript. Then the module tevininates.

Design Requirements:

None

Error Conditions:

None

216

* Engineering Application Module: SAERODRV

Entry Point: SARODR

Purpose:

MAPOL director for steady aeroelastic analyses.

MAPOL Calling Sequence:

CALL SAERODRV (BC, SUB, LOOP, MINDEX, SYM, MACE, QDP, PRINT);

BC Boundary Condition number. (Integer, Input)

SUB Current Mach number subscript number. (Integer, Input)

LOOP Logical flag indicating whether another subscript is required to complete
the set of all subcases. (Logical, Output)

MINDEX Mach number index associated with the current subscript.
(Integer, Output)

an4 symmetry flag for the current subscript.
- 1 symmetric
= -1 Antisymmetric
(Integer, Output)

MAC9 Mach number associated with the current subscript. (Real, Output)

QDP Dynamic pressure associated with the current subscript. (Real, Output)

PRINT Optional print flag indicating that the summary of trim caaes associated
with the current pass (subscript) is to be printed to the standard output.
(In the standard sequence, PRINT is used only during analysis not during
sensitivity analysis). (Optional, Integer, Input)

Application Calling Sequence:

None

Method:

First the CASE relation is read to determine the TRIM ids and sxmmetries of all SAERO cases in the
current boundary condition. If any exist, the TRIM relation is opened and read into memory. Each trim
entry referenced in CASE is then compressed into a format containing the TRIM id, Mach number,
dynamic pressure, trim type, Mach number index, subscript and subcase id.

Once these data are collected, the casu tuples read into memory are looped over to choose which TRIM
cases are to be analyzed for this subscript value. There are four steps in choosing the proper trim cases:

(1) Take the first SAERO subcase in CASE that has not been done on an earlier pass-- cases already
analyzed will reference trims with a "subscript" value that is not "null" (uninitialized) and that is
less than the current value of SUB - on the first design iteration all subscript values will be "null"

(2) Once the parent case is known, choose that case and all others with the same Mach, QDP and
TRMTYP

(3) Update the "subcript" attribute in TRIM to mark all the cases that are being processed. Also load
the SUBID to assist in re-merging the answers into CASE subcase order

217

(4) Check if any more saero subcases need to be processed and set the "loop" flag

After these steps have been completed, if the PRT flag is nonzero, a summary of the selected TRIfs
in printed to the output file.

Design Requirements:

1. The TRIM relation is assumed to contain NULL values for SuBSCRPT on the first subscript of the first
design iteration (for oPIMIZE, boundary conditions) and for the first subscript of all ANALYZE boundary
conditions.

Error Conditions:

None

218

,Engineering Application Module: S ROMXIG

Entry Point: SARG4R

Purpose:

Merges the static aero results for each subscript (stored in the matrix fATsuB]I) into the [MATOUT]
matrix in case order rather than subscript order for the bc'th boundary condition.

MAPOL Calling Sequence:

CALL SAEP.CG (BC, SUB, [MATOUTI], [MATSUB]);

BC Current boundary condition number. (Input, Integer)

SUB Current Mach number subscript. (Input, Integer)

[DATOUT] Merged output matrix reordered to be in CASE order for the current
boundary condition. (Input and Output)

[MATSUB] Generic input matrix containing data for the current subscript value in
TIMX id order of mIIx cses associated with the current subscript. (Input)

Application Calling Sequence:

None

Method:

First the CASE relation is read to ietrieve the trim id's for the SARRO subcases in the current boundary
condition. The the TRIM relation is read to obtain the subcase numbers associated with each trim id
having the current SuBscript value.

Then the H&TSUB and MATOUT matrices are opened. If mmTOT is uninitialized or if SUB - 1, it is
initialized (flushed and the number of rows, precision and form set to those ofMATSUB. IfMXTT already
exists and has data in it, a scratch matrix is created to hold the final merged data.

For each SAERO CASE entry for the current boundary, the TRIM data are searched to determine the
subscript number associated with the subcase. Ifthe subscript is less than suB, a column from NATOUT
will be taken (it was stored there on an earlier pass). If the subscript is equal to SUB, it will be stored
on the output matrix from mATSUB. If greater than SUB, it is ignored till later passes.
Once a column is identified as active inMATSUB (Pcmindicates active and subscript = SUB), an additional
check is made to see if the column is active in PGUA. Only those columns that are active in PGMA are
copied to NAToUT. This filtering is done to limit the amount of computational effort in the stress, strain
and displacement constraint sensitivity computations that proceed using the MATOUT matrix. The
MATSUB columns that are active due to DCOMTRM constraints are no longer needed as these sensitivities
are assumed to have been computed already in the AmROSENS module.

Once the final matrix is formed, ifmoTO had had data in it, the name of the scratch matrix that was
loaded is switched with that of ,ATOUT. The scratch entity is then destroyed.

219

Design Requirements:

1. The assumption is that each MATSUB matrix contains the results from the "sUW"th subscript value in
the order the trim id's for that SUE appear in the TRIM relation.

2. The same MATOUT matrix must be passed into the mROSNSMR module on each call since the columns
associated with earlier subscript values are read from MATOUT into a scratch entity. The merged matrix
that results ., then reploces the input MhTOT.

3. The AzaosENs module is called upstream of the AROSNU module to process active DCONTM
constraints for the current subscript. Thus, those columns that are active only for DCOINTR constraints
may be filtered out for the downstream processing of stress, strain and displacement constraints.

Desi~m Requirements:

None

Error Conditions:

None

22

220

* Engineering Application Module: SCEVAL

Entry Point: SCEVAL

Purpose:
To compute the stress and/or straini constraint values for the statics or steady aeroelastic trim analyses

in the current boundary condition.

MAPOL Callinp Sequence:

CALL SCEVAL (NITER, BC, [UG(BCfl, [SMAT], TREF, [GLBSIG], CONST, DSCFLG);

NITER Design iteration number (Integer, Input)

BC Boundary condition identification number (Integer, Input)

lUG (BC)] The matrix of global displacements for all static applied loads in the cur-
rent boundary condition (Input)

[SMAT] Matrix entity containing the sensitivity of the stress and strain compo-
nents to the global displacements (Input)

TREF Unstructured entity containing the element reference temperature (Input)

[GLBSIG] Matrix of stress/strain components for all the applied stress constraints
for the current boundary condition (Output)

CONST Relation of constraint values (Const)

DSCFLG The discipline flag (Integer, Input)
- 0 statics
> 0 static aeroelasticity

Application Calling Sequence:

None

Method:

The scEVAL module begins by determining if there are any stress constraints applied by checking if any
DCONVM, DCONThK DCONVMP, DCONTW, DCONTWI DCOHTNP, DCONEP, DCONEP DCONEPP, DCONFT,
DCONFT, DcoNTP bulk data entries were included in the input data stream. If any are found,
execution continues.

First the CASE relation is read. Then, if the call is associated with SAERO disciplines, the TRIM relation
is read to associate, for each subcase, the subcase id and the subscript id. Then an in-core table is formed
that contains, for the subcases in this boundary condition the DISFLAG, SUBSCRIPT, and TwmmD. The
latter is for thermal load corrections to the stresses and strains. If any thermal load cases weie found,
the GRIDTEMP and TREF entities are is opened.

If the current boundary condition is the first with stress or strain constraints, the running constraint
type count variables are reinitialized for the current design iteration. This type count provides a link
between the ACTCON print of design constraints and the debug print option supported by the SCEVAL
module. If any thermal loads exist for the current boundary condition, the GRIDTEHP and TREF entities
are brought into memory to be available for the computation of the stress-free thermal strain correction
to the element stresses. Once these preparations have been made, the SmAT matrix of stress/strain
sensitivities and the GLBSIG matrix are opened and the GLBSIG matrix is positioned to the proper
column to pack additional stress/strain components. Note that the GLBSIG matrix stores all the columns

221

associated with the current boundary condition since they are required for the constraint sensitivity
computations.

Finally, the UG matrix of global displacements is opened. For each column in the uG matrix associated
with a set of physical displacements (the sAMo dibcipline generates psuedo-displacements associated
with aeroelastic effectiveness constraints that are ignored by scVATL), the matrix product

[G•) -S [SMT] {UG)

is calculated to obtain the component stress or strain values for each constrained element. Having
calculated and stored in core these values, the element dependent constraint evaluation routines are
called to process each constraint. Note that the order in which the element routines are called must be
the same as the order the SmAT columns were formed. That order is:

1. Bar elements, BArsc

2. Isoparametric quadrilateral membrane elements, QDISC

3. Quadrilateral bending plate elements, QD4SC

4. Rod elements, RODSC

5. Shear panels, SEMSC

6. Triangular bending plate elements, TR3SC

7. Triangular membrane elements, TS'SC

On the first pass through the element dependent routines, all the ZXXIEST tuples (i.e., RODEST and
TMdMST) with nonzero stress/strain constraint flags are retrieved from the data base. For subsequent
passes, this information is used directly from core. Each constraint is evaluated in turn with the stress
components modified by the thermal stress correction if the displacement field includes thermal strain
effects. The CONST relation is loaded with one tuple for each constraint as they are processed. When all
the constraints have been evaluated for the current loading condition, the adjusted stress/strain
constraint terms are packed to the GLESIG matrix.

Design Requirements:

1. The SmiT, GWDTEKP and TREF entities must exist.

2. The C~sz relation must be complete from SOLUTION.

Error Conditions:

1. A zero material allowable may cause division by zero in the computation of some of the constraints.

222

Engineering Application Module: SOLUTION

Entry Point: SOLUTION

Purpose:

To interpret the solution control packet.

MAPOL Calling Sequence:

CALL SOLUTION (NUMtPTBC, NBNDCOND, MPS, MPE, OCS, OCE, FSDS, FSDE, MAXITER,
NOVLIM, WINDOW, OCMIVLIM, ALPHA, CNVRGLIM, NRFAC, EPS);

NUMOIPTC Number of optimization boundary conditions (Integer, Output)

NENDCOND Total number of optimization and analysis boundary conditions (Integer,
Output)

MPS The first iteration to use math programming (Integer, Output)

bm The last iteration to use math programming (Integer, Output)

ocs The first iteration to use optimality criteria (Integer, Output)

OCE The last iteration to use optimality criteria (Integer, Output)

FSDS The first iteration to use FSD (Integer, Output)

FSDE The last iteration to use FSD (Integer, Output)

MAXITER The maximum number of allowable iterations (Integer, Output)

MOVLIM Limit on how much a design variable can move for this iteration in using
math programming(Real, Output)

WINDOW The window around the zero in which the MOVLim bound is overridden to
allow the local variable to change sign. If WINDOW = 0. 0, the local vari-
able may not change sign. If WINDOW is nonzero, the half width of a band
around zero, zPS is computed

EPS - WINDOW/100 * MAX (ABS (mIN), ABS (TIN))

If the local variable falls within the band, the new minimum or maximum
for the current iteration is changed to lie on the other side of zero from
the local variable. The bandwidth EPS is a percentage of the larger of
InmX or n•m where WINDOW specifies the percentage. (Real, Output)

OCMVLIM Limit on how much a design variable can move for this iteration in using
optimality critera (Real, Output)

ALPHA Exponential move limit for the FSD algorithm (Real, Output)

CNVRGLIM Relative percent change in the objective function that indicates approxi-
mate problem convergence (Real, Output)

NRFAC Determines the minimum number of retained constraints equal to
NRmAC*NDV (Real, Output)

EPS A second criteria for constraint retention. All constraints greater than or
equal to zPs will be retained (Real, Output)

223

Application Calling Sequence: I
None

Method:

The SOLUTION module interprets the solution control statements and loads the resultant information
to the c¢z relation. On completion of the routine, the total number of all boundary conditions, the
number of analysis boundary conditions and the user's optimization strategy are output to the executive
sequence to direct the MAPOL execution path.

Design Requirements:

1. A Solution Control packet must be included in the input data stream.

Error Conditions:

1. Syntax errors and inconsistent or illegal solution control requests are flagged and the execution is
terminated.

2

224

Engineering Application Module: SPLINES

Entry Point: SPLINE

Purpose:

Generates the interpolation matrices that relate displacements and forces between the structural and
steady aerodynamic MODELS.

MAPOL Calling Sequence:

CALL SPLINES (GSIZEB, GEC*SA, MECC*PS, AEROS, [GTKG], [GSTKG]);

GSZZEB The number of degrees of freedom in the set of all structural GRID and
SCALAR points. (Integer, Input)

GECUSA A relation describing the aerodynamic boxes for the steady aerodynamics
model. The location of the box centroid, normal and pitch moment axis
are given. It is used in splining the aerodynamics to the structure and to
map responses back to the aerodynamic boxes. (Input)

AECCWPS A relation describing aerodynamic components for the steady aerodynam-
ics model. It is used in splining the aerodynamics to the structural model.
(Input)

AEROS A relation containing the definition of the aerodynamic coordinate sys-
tem. (Input)

[GTKG] The matrix of splining coefficients relating the aerodynamic presz-es to
forces at the structural grids. (Output)

[GSTKG] The matrix of splining coefficients relating the structural displacements
to the streamwise slopes of the aerodynamic boxes. (Output)

Application Calling Sequence:

None

Method:

All the SPLINE1, SpzYr2 and A,•'Acr data are read and those associated with the steady aerodynamic
model as described by the AECcHPS entity are used to assemble a list of aerodynamic boxes and structural
grids for each spline. The GECmSA relation is used to obtain the basic coordinates of the aerodynamic
boxes and the BGPDT relation is used to obtain the locations of the structural grids. The spline matrix
consisting of two columns (displacement and slope) for each aerodynamic box and 6 rows for each
structural grid is then assembled for the aerodynamic boxes and structural grids attached to the spline.

The spline matrix is then expanded to include two columns for each aerodynamic box in the steady
aerodynamic model and GSIZEB rows. It is then split into two pieces with each odd-numbered column
(displacement) merged with previously processed splines to form the GTKG matrix and each even
numbered (slope) column merged to form GSTKG. The process is repeated until all splines have been
completed. The final matrices are returned to the MAPOL sequence.

225

Desigm Requirements:

None

Error Conditions:

1. Each aerodynamic box may appear on only one sPLnmil, SPLINE2 or ATTACK entry although not all
boxes need appear. Missing boxes will not influence the aeroelastic response.

2. Missing structural grids or aerodynamic elements appearing on the spline definitions will be flagged.

226

* Engineering Application Module: SPLINEU

Entry Point: SPLINE

Purpose:

Generates the interpolation matrix that relate displacements and forces between the structural and
unsteady aerodynamic MODELS.

MAPOL Calling Sequence:

CALL SPLINZU (GSIZEB, GEC(UA, AECCHPU, AERO, [UGTKG]);

GSIZEB The number of degrees of freedom in the set of all structural GRID and
SCALAR points. (Integer, Input)

GEOCNUA A relation describing the aerodynamic boxes for the unsteady aerodynam-
ics model. The location of the box centroid, normal and pitch moment axis
are given. It is used in splining the aerodynamics to the structure and to
map responses back to the aerodynamic boxes. (Input)

AECC)PU A relation describing aerodynamic components for the unsteady aerody-
namics model. It is used in splining the aerodynamics to the structural
model. (Input)

AERO A relatioD containing the definition of the aerodynamic coordinate sys-
tem. (Input)

[UGTKG] The matrix of splining coefficients relating the aerodynamic pressures to
forces at the structural grids and relating the structural displacements to
the streamwise slopes of the aerodynamic boxes. (Output)

Application Calling Sequence:

None

Method:

All the SPLINE1, SPLINE2 and ATTACH data are read and those associated with the unsteady aerody-
namic model as described by the AECcwU entity are used to assemble a list of aerodynamic boxes and
structural grids for each spline. The GECtUA relation is used to obtain the basic coordinates of the
aerodynamic boxes and the BGPDT relation is used to obtain the locatioais of the structural grids. The
spline matrix consisting of two columns (displacement and slope) for each aerodynamic box and 6 rows
for each structural grid is then assembled for the aerodynamic boxes and structural grids attached to
the spline.

The spline matrix is then expanded to include a 2 columns for each aerodynamic box in the unsteady
aerodynamic model and GSI ZE rows. It is then merged with previously processed splines. The process
is repeated until all splines have been completed. The final [UGTKGJ matrix is returned to the MAPOL
sequence.

227

Design Requirements: I
None

Error Conditions:

1. Each aerodynamic box may appear on only one sP iNl, sPLIN2 or ATTACH entry although not all
boxes need appear. Missing boxes will not influence the aeroelastic response.

21. Missing structural grids or aerodynamic elements appearing on the spline definitions will be flagged.

228

, Engineering Application Module: STEADY

Entry Point: STEADY

P'Urose:
'Tb perform preface aerodynamic processing for planar steady aerodynamics.

MAPOL Calling Sequence:

CALL STEADY (MrtDEX, LOOP, AECCUPS, GEOMSA, STABCF, [AICMAT (MInMEX)],
EAAI.cT zDEX) 3, [AIRFRC (m•DEX)], AEROGEOC, CAROGEC);

MINDEX Mach number index for the current pass. Controls which Mach Num-
ber/symmetry conditions will be processed in this pass of STEADY. One
pass for each unique Mach number will be performed with MnDEX incre-
menting by one until STEADY returns LOOP-FALSE. (Input)

LOOP A logical flag set by STEADY to indicate whether additional MNDEX sub-
scripts are needed to complete the processing of all the Mach number/sym-
metry conditions on all the TRIm entries. One pass for each unique Mach
number will be performed with IaNDEX incrementing by one until
STEADY returns LOOP-FALSE. (Output)

AExCCHS A relation describing aerodynamic components for the planar STEADY
aerodynamics MODET. It is used in splining the aerodynamics to the struc-
tural model. (Output)

GECHSA A relation describing the aerodynamic boxes for the planar STEADY aero-
dynamics MODEL. The location of the box centroid, normal and pitch mo-
ment axis are given. It is used in splining the aerodynamics to the
structure and to map responses back to the aerodynamic boxes. (Output)

STABCF A relation of rigid stability coefficients for unit configuration parameters.
The rigid coefficients are stored in STABCF and the corresponding distrib-
uted forces are stored in famI'Rc. The STAsCF relation is used to pick the
appropriate rigid loads from AIRPC when performing the aeroelastic
trim as well as for retrieving the RIGID/DIRECT stability coefficients for
each configuration parameter. (Output)

[AICNAT (MINDEX)] Matrix containing the STEADY aerodynamic influence coefficients for SYm-
metric Mach numbers (Output)

[AAICIMT (MIDEX)] Matrix containing the STEADr aerodynamic influence coefficients for anti-
SYMmetric Mach numbers. (Output)

[AIPJRC (INMDEX)] Matrix containing the aerodynamic forces for unit configuration parame-
ters for the current Mach number index. If both sYMmetric and antiSYM-
metric conditions exist for the Mach number, both sets of configuration
parameters will coexist in AImRac. (Output)

AEROGECH A aerodynamic geometry relation output only for geometry checking. The
"grids" defined in AEROGCM are "connected" to 2-node (RODs) and 4-node
(QUAvs) elements in the CAROGEcu in such a way as to emulate the struc-
tural MODEL. ICE may then be used to punch an equivalent structural
MODEL to allow graphical presentation of th3 STEADY aero model.

229

CA-OGECM A aerodynamic geometry relation output only for geometry checking. The
"grids" defined in A a iROc are "connected" to 2-node (RoDs) and 4-node
(QUADs) elements in the cAmom in such a way as to emulate the struc-
tural MODEL. ICE may then be used to punch an equivalent structural
model to allow graphical presentation of the STEADY aero model.

Application Calling Sequence:

None

Method:

The STEADY preface module performs initial aerodynamic processing for planar STEADY aerodynamics.
It is driven by the the TRnM data present in the bulk data packet and the s•zRo disciplines in the CASE
relation. The CASE relation provides the symmetries while the TRIM relation provides the Mach
numbers. Only if SAERO disciplines are in CASE is any processing done and both TRIM and AERos entries
must be found.

On each call, the PASSDF submodule is called to determine the set of all Mach numbers and, for each
Mach number, whether symmetric, antisymmetric or both boundary conditions are to be applied. Having
determined all unique Mach numbers, the PASSDF then determines the HINDx'th Mach number in
numerical order (lowest to highest) and that is then processed. If the chosen Mach number is the last
one, the LOOP flag is set to false to tell the MAPOL sequence that no more calls are needed.

On the first call (determined by MMEXue1) the STEADY module computes the planar STEADY aerody-
namic geometry in calls to Guc. It then processes the current Mach number and stores the resultant
AIc terms in the AICMAT and/or A.ICmT entity (depending on the symmetry options) and in the
resultant rigid forces in the AIRFRC matrix. The STABCF relation is loaded for the current MINDEX value
with the symmetric and antisymmetric stability derivatives in the same order that the AkRFRC matrix
columns are loaded. Hence, the STABCF relation points to the corresponding AIRnRc column.

Design Requirements:

1. The STEADY module interacts with the executive in that the LOOP variable is output on the first call
and the module expects to be called again as long as LOOP is true. For each time called, the MhDEX
parameter should be unique although it need not be monotonically increasing. The MI~MX value must
be 1 on the first call to ensure that the geometiy processing is done.

Error Conditions:

1. Errors in the STEADY aerodynamic MODELS or TRIM specifications are flagged.

230

* Engineering Application Module: STEADYNP

Entry Point: STDYNP

Puarpo0se:I
Non-planar STEADY aeroelastic analysis preface.

MAPOL Calling Sequence:

CALL STEADYNP (NONPONLY, AEC(HPS, GECHSA, STABCF, [AIRFORCE], AEROGC24,
CA1OGEC(, 0AGRDLOD);

NONPONLY A logical flag returned to the MAPOL sequence that is true if the only dis-
ciplines in the CASE relation are nonplanar static aerodynamics subcases.
If so, the MAPOL sequence should terminate since there is no further
steps to be taken. (Output)

AECOCPS A relation describing aerodynamic components for the nonplanar STEADY
aerodynamics model. (Output)

GEGISA A relation describing the aerodynamic boxes for the nonplanar STEADY
aerodynamics model. The location of the box centroid, normal and pitch
moment axis are given. (Output)

STABCF A relation of rigid stability coefficients for unit configuration parameters.
The rigid coefficients are stored in STABCF and the corresponding distrib-
uted forces are stored in AIRFRC. The STABCF relation is used to pick the
appropriate rigid loads from AIRMC when performing the aeroelastic
trim as well as for retrieving the RIGID/DIRECT stability coefficients for
each configuration parameter. (Output)

[AIRFORCE] Matrix containing the aerodynamic forces for unit configuration parame-
ters for the highest Mach number used in the set of NPSAERO subcases in
the Solution Packet. If both symmetric and antisymmetric conditions ex-
ist for the Mach number, both sets of configuration parameters will coex-
ist in AIPXORCE. (Output)

AEROGEQ4 A aerodynamic geometry relation output only for geometry checking. The
"grids" defined in Awomomi are "connected" to 2-node (RODs) and 4-node
(QtmDs) elements in the CAROGEOH in such a way as to emulate the struc-
tural model. ICE may then be used to punch an equivalent structural
model to allow graphical presentation of the STEADY aero model.

CAROGEGC A aerodynamic geometry relation output only for geometry checking. The
"grids" defined in AEIxOGEm are "connected" to 2-node (RoDs) and 4-node
(QUADs) elements in the CAKOECH in such a way as to emulate the struc-
tural model. ICE may then be used to punch an equivalent structural
model to allow graphical presentation of the STEADY aero model.

OAGROLOD A relation containing the rigid forces and pressures for each NPSAERO sub-
case's set of configuration parameters for the aerodynamic elements
whose PRESSURE output was requested in Solution Control. These consti-
tute the "trimmed" state of the configuration. (Output)

231

Application Calling Sequence:

None

Method:

The STEADYNw preface module perform all the processing for nonplanar STEADY aerodynamics. It is
driven by the the TRIM data present in the bulk data packet and the NPSAEo disciplines in the C"Z
relation. The CAsz relation provides the symmetries while the TRIM relation provides the Mach
numbe-s. Only if NPsARo disciplines are in CASE is any processing done and both TRIM and AFROS
entries must be found. If only NPszAEo cases are found in CASE, t:ie NOmNmLY flag is set to TRUE.

Internally, oie pass is made over the STEADYNP module for each distinct Mach number on the TRIs in
CASE. On erch pass, the PASDFN submodule is called to determine the set of all Mach numbers and, for
each Mach number, whether symmetric, antisymmetric or both boundary conditions are to be applied.
Having determined all unique Mach numbers, the PASSDF then determines the Mach number (in
numerical order lowest to highest) to be processed. A INDZX value from one to the number of unique
Mach numbers is assigned to identify the pass. If the chosen Mach number is the last one, a LOOP flag
is set to false to tell the sTrADYMP that no more passes are needed.

On the first pass, the STEADYNP module computes the nonplanar STEADY aerodynamic geometry in calls
to GEm On the first and subsequenct passes, it then processes the current Mach number and stores
the resultant rigid forces due to unit parameters in a scratch entity. Amaximum of 50 Mach Index values
may be analyzed in a single ASTROS job. The STABCF relation is loaded for the current MNDEX value
with the symmetric and antisymmetric stability derivatives in the same order that the rigid force matrix
columns are loaded. Hence, the STAECF relation points to the corresponding AIRFMcE column.

Once all the ARPORCE matrices for each Mach number index are computed, the NPATm submodule is
called to solve the "trim" condition for each subcase. That solution involves assembling the A vector from
the user's TRim entry and multiplying the rigid unit force matrix by it. If any PRESSURE requests are
in the Solution Control, the pressures and forces on the appropriate aerodynamic boxes are loaded to
the OAG=oLOD relation. Finally, the intermediate rigid force matrices are deleted except for the last one.
Its name is exchanged for that of AIRFORCE so that it is available to the MAPOL sequence for user
manipulation.

Design Requirements:

1. A maximum of 60 unique Mach numbers may be analyzed in a single run.

2. Only the last (highest) Mach number's rigid unit loads matrix, AIRFORCE, is saved and output to the
MAPOL sequence.

Error Conditions:

1. Errors in the STEADY aerodynamic MODELs or TRIM specifications are flagged.

232

Engineering Application Module: TCEVAL

Etry Point: TCEVAL

Purpose:

lb compute the current values of thickness constraints for this optimization iteration.

MAPOL Calling Sequence:
CALL TVAL (NITER, NDV, M)VLIM, WINDOW, GLBDES, LOCLVAR, [PHINTI,

[PMAXT], TFIXED, CONST);

NITER Design iteration number (Integer, Input)

NDV The number of design variables (Integer, Input)
MOVLIM Move limit to apply to the local design variables:

t/MVLIX < t < t * MOVLIM; MOVLIM > 1.0

(Real, Input)
WINDOW The window around the zero in which the MOVLIM bound is overridden to

allow the local variable to change sign. If WINDOW = 0.0, the local vari-
able may not change sign. If wNDow is nonzero, the half width of a band
around zero, ws is computed

EPS - WINDOW/100 * MAX (ABS (TMIN), ABS(THMX))

If the local variable falls within the band, the new minimum or maximum
for the current iteration is changed to lie on the other side of zero from
the local variable. The bandwidth EPS is a percentage of the larger of
•TKx or TWN where WINDMW specifies the percentage. (Real, Input)

GLBDES Relation of global design variables (Input)

LOCLVAR Relation containing the relationship between local variables and global
variables in the design problem (Input)

[CPINT] Matrix entity containing the minimum thickness constraint sensitivities
(Input)

IPMAXT] Matrix entity containing the maximum thickness constraint sensitivities
(Input)

TFIXED Relation of fixed thickness of layer (Input)

CONST Relation of constraint values (Output)

Application Calling Sequence:

None

Method:

The module determines if any minimum and maximum gauge constraints exist in the problem. These
constraints are generated by ASTROS if, and only if, shape function design variable linking is used. If
any constraints exist, the vector of design variable values from GLDES and all the W.•CLVAR data are
brought into core. The next step is to determine if any user specified move limit on the local variables
is to be applied to the minimum thickness constraints (note that the maximum thickness constraints
are always computed relative to their gauge limits rather than to a move limit).

233

If move limits are applied (as they almost always Rre), the DCONTEK or DCONTH2 data are also brought
into core to identify which elements minimum gauge constraints are always to be retained by the
constraint deletion algorithm in the ACTCON module. The minimum gauge constraints are then computed
by performing the matrix multiplication:

fgI = 1.0 - MINThTI(V) = 1.0 -

The LOCLVAR data is then used to determine to which element each "g" applies. If the constraint value
,s less critical (more negative) than the move limit value of

roove _ 1.0 - MOVLIM

it is stored on the CONST relation as a computed constraint only if it appears on a DCONTHR cr
DCONTE2entry (in which case it will end up as an active constraint from ACTCON), otherwise, the
constraint is ignored for this design iteration. If the constraint value is more critical than the move limit
value, it is only stored on CONST if it is on a DCONT or DCON= entry or if the constraint -v-iolates a
cutoff value set to

gretain = 0. 10

Any minimum thickness constraints that are stored on CONST that do not app6ar on DCONTEK or
DCOWTM2 entries will be subject to the normal constraint deletion criteria. The maximum gauge
constraints are then computed by performing the matrix multiplication:

{g) - EPMAXT] {v) + {V}fJ.X - 1.0

The IOCLVAt data is then used to determine to which element each "g" applies. No move limits are
applied to these constraints and they are stored directly to the CONST relation to undergo the normal
constraint deletion in ACTCON.

Design Requirements:

1. This module should be the first module called in the optimization phase of the MAPOL sequence.

2. The move limit that is passed into this routine maust match the value used to evaluate the constraints
in the MAwFV module. If not, the constraint sensitivities will be in error with no warning given.

Error Conditions:

1. Alocal variable has become negative due to insufficient DCONTEK or DCOwnH2 entries or illegal gauge
constraints.

234

Engineering Application Module: UNSTEADY

Entry Point: UNSTDY

Purose:

Unsteady aeroelastic analysis preface.

MAPOL Calling Sequence:

CAM UNsTEADY (GEcHUA, AECcWPU, [AJJTL], DIJK)], [D2JK], [SKJ]);

GEMtUA A relation describing the aerodynamic boxes for the unSTEAD! aerody-
namics model. The location of the box centroid, normal and pitch moment
axis are given. It is used in splining the aerodynamics to the structure
and to map responses back to the aerodynamic boxes. (Output)

AECiPU A relation describing aerodynamic components for the unsTEAY aerody-
namics model. It is used in splining the aerodynamics to the structural
model. (Output)

[.kJjTL] A matrix containing the transposed unsteady Axc matrices for each Mach
number, reduced frequency and symmetry option in the Bulk Data
HKAZR01 and MrAER2 entries. (Output)

[DIJK] Real part of the substantial derivative matrix. (Output)

[D2J.K] Imaginary part of the substantial derivative matrix. (Output)

[Si'x] Integration matrix to take pressures to forces. (Output)

Ap'plication Calling Sequence:

None

Method:

The unsteady aerodynamics preface module is activated under the following conditions:

1. If any FLUTTER cases are in the CASE relation

2. If any BLAST cases are in the CA.SE relation

3. If there are any TRANSIENT or F3EQUENCY cases that invoke the GUST option.

After checking for the prsence of the proper cases, the OKAER01 and bWAERo2 data are read from the
database and a list of all Isyrnm,m,k} sets are assembled. The first record of the utm table is then
written containing a count of the number of {m,k) pairs in each of the six symmetry classes. The second
record will be loaded within the Am submodule and closed on return to UNSTEADY.

Then the unsteady aerodynamics model is read from the database into memory for the Am submodule.
That module is then called to form the geometrical description of the unsteady model. The ACPT, the
GECNUA and the Aiccwu entities are written along with the second record of the mm

0
235

Once the geometry data are complete, the AMG submodule is called to compute the AJJT, D13K, D2Mix
and sKJ matrices. These computations are done for all the {symm,m,k) sets in the bulk data. Each AJJT
matrix is appended to the AJJTL output matrix. The DIJK, D2JX and sJi matrices will have two separate
matrices stored in a similar fashion if and only if both subsonic and supersonic Mach numbers appear
in the UNM sets. Once these computations are complete, UNSTEAY returns control to the MAPOL
sequence.

Design Reguirements:

None

Error Conditions:

None

236

* Engineering Application Module: vANGo

Entry Point: VANGO

Performs redesign by optimality criterion methods based on the current set of active constraints and
constraint senstivities.

MAPOL Calling Sequence:

CALL VANGO (NITER, NDV, APPCNVRG, MOVLIM, CNVRGLIM, CTL, CT•MIIN,
N!-GaPTBC, GLWDES, CONST, [AMAT], DESHIST);

NITER Current iteration number. (Input, Integer)

NDV Number of design variables. (Input, Integer)

APPCNVRG Logical flag set to TRUE if the approximate problem is considered con-
verged on termination of the module. (Output, Logical)

MOVLIM The move limit imposed on the change in any global design variable.

vWn -= MX (VIIN, V/lVLIM)

&,O_,LIM must be > 1.0, if not, MOVL% is set to 10000.0 without warn-
ing. (Input, Real)

CNVRGLIM The user supplied tolerance for the convergence of the approximate prob-
lem. The objective function and the Euclidean norm of the delta design
variable vector must be less than CMVRGLIM for the problem to be consid-
ered converged. (Real, Input)

cm Output value denoting the constraint value above which a constraint is
considered active. (Real, Output)

CTIMIN Output value denoting the constraint value above which a constraint is
considered violated. (Real, Output)

NUMOpMC The number of optimization boundary conditions. (Integer, Input)

GLIDES The relation of global design variables. (Input)

CONST The relation of design constraints. (Input)

AMAT The matrix of active constraint gradients. (Input)

DESHIST The relation of design variable history data. (Output)

Application Calling Sequence;

None

Method:

First the GLEDES relation is read to obtain global design variable data and the objective function
gradients. Then the design variable values, lower and upper bounds and scaling information is stored
into local arrays accounting for the move limits. The move limit is a user parameter that is controlled
through the Solution Control o~z to•--o,- I.rm value. The default value is 10000.0 which implies

237

that move limits will not be imposed. The vANGo module does not require move limits in the same way
that the DESIGN module does. The defaults are recommended.

The constraint gradients are then read into memory and scaled as appropriate for the design variable
scaling. Then the CONST data are read and reordered to ensure that the active constraint values line up
in memory with their respective constraint grAd'ents. Th.¢n, the constraint values are modified by adding
1.0 to the constraint value since the FMNOPT Optimality Resizing software requires that the constraint
inequality limit be nonzero while ASTROS uses zero exclusively.

Then a call is made to vaova to get the user overrides to the FUNOPT parameters frum the OCPAPM
bulk data entries. Then, the saved values of FUOPT-controlled parameters are retrieved from storage.
On the first iteration of OC methods, FNOPT will initialize these parameters. They are:

ISTAT from word 2 of the iPM array
NCSC from word 4 of the IP• array
ITER from word 8 of the IP1M array
NRTAIN from word 10 of the pm'4 array
IGRDST from word 11 of the IPMP array
OBJRSZ front word 14 of the RPRM array

Then the loop over FUNOPT is begun. Only if the ocAPPROX option is selected will multiple passes through
FUNOPT t.Ke place. In the default behavior, the constraints, constraint gradients and design variable
are passed to FuNoPT and the new design variables are output.

After "convergence" has been reached, the current values of the FMUOPT parameters are saved to the
database for retrieval on subsequent calls. The new design variables are written to GLEDES and the
DESHIST data are computed. Finally, the convergence criteria for approximate problem convergence are
checked through the use of the ACNVRG submodule.

Design Requirements:

1. The DEBUG packet input OCAPPROX is used to choose whethervANGO will use the approximate problem
equations to predict a new set of constraint values and constraint gradients following a design variable
move. A value > 0 allows VANGO to use the linear gradients to predict new constraint values. A value of
0 forces a complete new analysis after the new variables have been computed. (The use of the
approximate problem is is an experimental feature and should not be used).

2. The DEBUG packet input ocnIv is used to choose whether VANGO will use inverse design variables or
direct design variables in the solution of the problem. Avalue greater than zero allows vANGO to use the
inverse design variable approximations. (This is an experimental feature and should not be used).

Error Conditions:

None

238

Engineering Application Module: YSMERGE

Entry Point: YSMERG

Purpose:

To provide a special purpose merge utility for merging Ys- like vectors (vectors of enforced displacements)
into matrices for data recovery

MAPOL Calling Sequence:

CALL YSMZRGE ([UNI, [YS(BC)], [UFI, [PNSF(BC)1, DYNFLG);

[UN] Matrix containing the nodal response quantities for the independent de-
grees of freedem (Output)

[Ys (BC)] Optional matrix containing the vector of enforced displacements on the
single-point constr-'nt degrees of freedom. If the Ys argument is omitted,
null vectors are merged. (Input)

[UF] The matrix of free nodal response quantities to be merged with the YS vec-
tor

[PNSF (BC)] The partitioning vector splitting the independent degrees of freedom into
the free and the single point constraint degrees of freedom (Input)

DYNLG Dynamic matrix form flag: if DYNFLG is nonzero, the matrix UF is as-
sumed to have the form of a dynamic response matrix: three columns per
subcase; (1) displacement, (2) velocity and (3) acceleration (Integer, Input)

Application Calling Sequence:

None

Method:

The YSbMRGE engineering utility module is a general utility to merge a column vector, YS, (or a null
column) that represents a partition of the desired output matrix with the other partition, UN, based on
an input partitioning vector. The column dimension of uF is used to determine the number of times YS
is to be duplicated in the merge operation. The result is loaded into the uN matrix. As a special option,
the DYNFLG input is used to direct the module to assume that the UP and uN matrices have, or are to
have, the form of a dynamic response "displacement" matrix. These matrices have three columns for
each time/frequency step:

(1) Displacement

(2) Velocity

(3) Acceleration

When DYM•G is nonzero, the YS matrix is merged with the first column (displacements) of each triplet
with null partitions used for the corresponding velocities and accelerations.

Design Requirements:

1. The Ys matrix entity, if it is included in the calling sequence, must be null (no columns) or be a column
vector. If the matrix is null, the routine acts as though it were not included in the calling sequence.

Error Conditions:

* None

239

6. APPLICATION UTILITY MODULES

Large software systems such as ASTROS require that similar operations be performed in many
code segments. To reduce the maintenance effort and to ease the programming task, a set of commonly
used application utilities were identified and used whenever the application required those tasks to be
performed. This section is devoted to the documentation of the set of application utilities in ASTROS. The
suite of utilities in ASTROS includes small (performed entirely in memory) matrix operations like linear
equation solvers, matrix multiplication and others. Another suite of utilities have been written to sort
tables or columns of data on real, integer and character values in the table. Other utilities search lists of
data stored in memory for particular key values, initialize arrays, operate on matrix entities and perform
other disparate tasks of a general nature. The ASTROS user who intends to write application programs
to be used within the ASTROS environment is strongly urged to study the suite. of utilities documented in
this section. ASTROS software designed to make use of the suite of application utilities can be much
simpler to write, debug and maintain since these well-tested utilities can be substituted for code that
would otherwise require programming effort.

The following -"bsections document the interface to the application utilities in two formats; using
the executive system (MAPOL) and using the FORTRAN calling sequence. In most cases, there is no
MAPOL language interface since these utilities are useful only within an application module. In other
cases, however, the utility has been identified as a feature accessible through the executive. Finally, a
small number of these application utilities are intended for access only by the executive system. This
family of utilities is always associated with obtaining formatted output of data stored on the database.

241

Application Utility Module: APPEND

Entry Point: APPEND

Purpose:

This routine adds all the columns of one input matrix to the end of another.

MAPOL Calling Sequence:

CALL APPEND (MATOUT, MATIN);

Application Calling Sequence:

CALL APPEND (MATOUT, MATIN, IKOR)

4ATOUT The name of the output matrix to which the columns are added
(Character, Output)

MATIN The name of the input matrix from which the extra columns are extracted
(Character, Input)

IKOR Open core base address for local dynamic memory allocation
(Integer, Input)

Method:

Matrix dATOUT is first initialized. Error checks are made to see if the matrices are conformable for the
append operation. The columns of MATIN are then appended to the MAT=UT matrix with special
provisions given to handle null columns in bTIN.

Design Requirements:

None

Error Conditions:

1. MATOUT has not been created first (APPEND does an WNIIT, but the entity must already exist as a
matrix).

2. NATOUT and MATIN have different types (precision/real or complex).

3. MATOUT and mATIN have a different number of rows.

242

Application Utility Module: DAXB

Entry Point: DAXB

Purpose:

This routine takes the double-j. ,.:'sion cross product of vectors in a three-dimensional space.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DAXB (A, B, C

A is a vector (3xl) (Double, Input)

B is a vector (3xl) (Double, Input)

C On output, cross product A X B (Double, Output)

Method:

None

Design Requirements:

None. Error Conditions:

None

243

Application Utility Module: G,4MATC I
Entry Point: GNMMATC

Purpose:

Perform the in-core complex matrix multiplications:

[A] [B] - (C]
[A] [B]T - [C]
[A]T(B] = [C]
[A]T B]T =[C]

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL cEATC (A, IP'DWA, ICOLA, MTA, B, IRONS, ICOLB, NTB, C)

A Matrix of IRoWA rows and ICOLA columns stored in row order in a linear
array

B Matrix of iRONE rows and ICOLB columns stored in row order in a linear
array

MTA,?TB Transpose flags
- 0 if no transpose
= I if transpose

c On output, the result of the matrix multiplication

Method:

The (aTC routine assumes that suffiLient storage spacc is available in core to perform the multipli-
cation. The matrices are checked to ensure that they are of proper dimensions to be multiplied. Complex
single-precision is used throughout the routine.

Design Requirements:

None

Error Conditions:

None

244

Application Utility Module: GMMATD

Entry Point: dMA•TD

Purpose:

Perform the in-core double-precision matrix multiplications:

[A] [B] = [C]
[A] [R3T = [C]
[A]TEB] = [C]
[A]T[B]T [C]

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL GMMTD (A, IROWA, ICOLA, MTA, B, IROWB, ICOLB, NTB, C)

A Matrix of IRMowA rows and ICOLA columns stored in row order in a linear
ariay

B Matrix of IROWB rows and IcOLE columns stored in row order in a linear
array

MTA,NTB Transpose flags
= 0 if no transpose
= 1 if transpose

C On output, the result of the matrix multiplication

Method:

The GMNTD routine assumes that sufficient storage space is available in core to perform the multipli-
cation. The matrices are checked to ensure that they are of proper dimensions to be multiplied. Double
precision is used throughout the routine.

Design Requirements:

None

Error Conditions:

None

0
245

Application Utility Module: Gm4&TS

Entry Point: M4ATS

Purpose:

Perform the in-core single-precision matrix multiplications:

[A] [B] [C]
[A] ER]T C]
[A] TEB] = [C]
[A] T[B]T [C]

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL GMMATS (A, IROWA, ICOLA, HTA, B, IROMB, ICOLB, NTB, C)

A Ma+,-ix of IROWA rows and ICOLA columns stored in row order in a linear
array

B Matrix of IROWB rows and Icow columns stored in row order in a linear
array

VTA, NTB Transpose flags
= 0 if no transpose
= 1 if transpose

C On output, the result of the matrix multiplication

Method:

The GMMATS routine assumes that sufficient storage space is available in core to perform the multipli-
cation. The matrices are checked to ensure that they are of proper dimensions to be multiplied. Single
precision is used throughout the routine.

Design Requirements:

None

Error Conditions:

None

246

* Application Utility Module: INVERC

EntyPoint INVERC

purpose:

Single precision complex in-core matrix inversion and linear equation solver. Finds solution to the matrix
equation:

[A]{X} - (BI

MAPOL Calling Sequence:

None

Application Calling SeQuence:

CALL INVERC (NDIM, A, N, B, M, DETEPM, ISING, INDEX)

NDIM Actual dimension size of square matrix A in calling routine:
A (NDIM,NDIM) (Integer, Input)

A Square matrix to be inverted. On output, contains of inverse of A
(Complex, Input)

N Size of upper left portion being inverted. (Integer, Input)

B Column of constants (optional input of minimum size: B (NDIM, 1)). On
output, contains the solution vector(s) of the linear equations
(Complex, Input)

N Number of columns of B (Integer, Input)

DETEM Determinant of A if nonsingular (Complex, Output)

ISING Error flag
= 1 if A nonsingular
= 2 if A singular
(Integer, Input and Output)

INDEX Working storage (N, 3) (Complex, Input)

Method:

If on input, the value of ISING is less than zero, the determinant of the A matrix is not calculated. The
value of DETEEM on return will be zero. The matrix inversion routine uses the Gauss-Jordian method
with complete row-column interchange. Sufficient core storage must be set aside in INDEX to complete
the inversion.

Error Conditions:

None

0
2.47

Application Utility Module: INVERD

Entry Point: INVERD

Purpose:

Double precision in-core matrix inversion and linear equation solver. Finds solution to the matrix
equation:

[A](X) - (B)

MAPOL Calling Sequence:

None

Application Calling Se-quence:

CALL INVERD (NDIM, A, N, B, M, DETEMM, ISING, INDEX)

NDIM Actual dimension size of square matrix A in calling routine:
A (NDIM,NDIM) (Integer, Input)

A Square matrix to be inverted. On output, contains of inverse of A
(Double, Input)

N Size of upper left portion being inverted. (Integer, Input)

B Column of constants (optional input of minimum size: B (lqDNld, 1)). On
output, contains the solution vector(s) of the linear equations
(Double, Input)

M Number of columns of B (Integer, input)

DETERM Determinant of A if nonsingular (Double, Output)

ISING Error flag
= 1 if A nonsingular
= 2 ifA singular
(Integer, Input and Output)

INDEX Working storage (N, 3) (Double, Input)

Method:

If on input, the value of ISING is less than zero, the determinant of the A matrix is not calculated. The
value of DETERM on return will be zero. The matrix inversion routine uses the Gauss-Jordian method
with complete row-column interchange. Sufficient core storage must be set aside in INDEX to complete
the inversion.

Error Conditions:

None

248

Application Utility Module: INVErS

KnŽrLoint. INVERS

Purpose:

Single precision in-core matrix inversion and linear equation solver. Finds solution to the matrix
equation:

[A] (X} = (B)

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL INVERS (NDKI, A, N, B, M, DETERM, ISING, INDEX)

NDIM Actual dimension size of square matrix A in calling routine: A (ND1M,NDIM)
(Integer, Input)

A Square matrix to be inverted. On output, contains of inverse of A
(Real, Input)

N Size of upper left portion being inverted. (Integer, Input)

B Column of constants (optional input of minimum size: B (NDIM, 1)). On
output, contains the solution vector(s) of the linear equations (Real, Input)

1M Number of columns of B (Integer, Input)

DETERM Determinant of A if nonsingular (Real, Output)

ISING Error flag
= 1 if A nonsingular
= 2 ifA singular
(Integer, Input and Output)

TNDEX Working storage (N,3) (Real, Input)

Method:

If on input, the value of ISING is less than zero, the determinant of the A matrix is not calculated. The
value of DE.TERM on return will be zero. The matrix inversion routine uses the Gauss-Jordian method
with complete row-column interchange. Sufficient core storage must be set aside in IMDEX to complete
the inversion.

Error Conditions:

None

249

Application Utility Module: MSGDIP

,nt-o' Point: MSGDMP

Pr•ose:

Retrieves messages queued by the U1IWT module and writes them to the system output file.
MAPOL Calling zuence:

None

Application Calling Sequence:

CAL MSGDMP

Method:
The KSQMP routine reads the queued messages written by UWMRT from the queue file and writes them
onto the system output file. The queue file is then reset to accept the next set of messages. The intention
is thatimsDw will be called after each module's execution to allow easy determination of the last module
executed, should the execution terminate.

Error Conditions:

None

25f'

* Application Utility Module: POLCOD

Entry Point: POLCOD

Purpose:

This routine computes double-precision polynomial fit coefficients.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL POLCOD (X, Y, N, S, COF)

X The vector of scalar variables of length N (Input, Double Precision)

Y The vector of terms such that

EY(1)] f= EY] at X(1)

(Input, Double Precision)

N The rank of vectors X and Y (Input, Integer)

s The scratch array of length N to store the master polynomial coefficients
(Input, Double Precision)

coF The vector of coefficients such that

(Y(Z)] = [COF(1)] + Z[COF(2)] + Z**2[COF(3)]

(Output, Double Precision)

Method:

This routine computes polynomial fit coefficients from solution of Vandermonde matrix equations. It is
taken from "Numerical Recipes," Section 3.5, routine POLCUj:.

Design Requirements:

1. Use PoLL-M to evaluate the polynomial values based on the computed coefficients.

2. Use POLSLD to evaluate the polynomial derivative values based on the computed coefficients.

Error Conditions:

None

0
251

Application Utility Module: POLCOS

Entry Point: POLCOS

Pr-pose:

This routine computes single-precision polynomial fit coefficients.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL POLCOS (X, Y, N, S, COF)

X The vector of s-alar variables of length N (Input, Real)

Y The vector of terms such that

[(1)] - [Y] at X(1)
[Y(2)] = [Y] at X(2)

(Input, Real)

N The rank of vectors X and Y (Input, Integer)

S The scratch array of length N to store the master polynomial coefficients
(Input, Real)

coF The vector of coefficients such that

[Y(Z)] = [COF(l)] + Z[COF(2)] + Z**2[COF(3)]

(Output, Real)

Method:

This routine computes polynomial fit coefficients from solution of Vandermonde matrix equations. It is
taken from "Numerical Recipes," Section 3.5, routine POLCOE.

Design Requirements:

1. Use POLEVS to evaluate the polynomial values based on the computed coefficients.

2. Use POLSLS to evaluate the polynomial derivative values based on the computed coefficients.

Error Conditions:

None

252

Application Utility Module: POLEVD

Entry Point: POLEVD

Purose:

This routine performs double-precision polynomial evaluation from fit coefficients.

MAPOL Calling Sequerice:

None

Application Calling Sequence:

CALL POLEVD (COF, N, X, Y

COF The vector of coefficients such that

[Y(Z)] - [COF(1)] + Z[COF(2)] + Z**2[COF(3)]

(Input, Double Precision)

N The rank of vectors x and Y (Input, Integer)

x The scalar value at which polynomial is evaluated
(Input, Double Precision)

Y The function value at x (Output, Double Precision)

Method:

This routine performs double-precision polynomial evaluation from fit coefficients from solution of
Vandermonde matrix equations. It is taken from "Numerical Recipes," Section 3.5, routine POLCOZ.

Design Requirements:

1. Use POLCOD to evaluate the fit coefficients.

2. Use POLSLD to evaluate the polynomial derivative values based on the computed coefficients.

Error Conditions:

None

253

Application Utility Module: POLEVS

Entry Point: POLEVS

Purose:

This routine performs single-precision polynomial evaluation from fit coefficients.

IMVAPOL Calling Sequence:

None

Ap.lication Calling Sequence:

C&%L POLEVS C coF, N, X, Y)

Mco' The vector of coefficients such that

[Y(Z)] = [COF(1)] + Z[COF(2)] + Z**2[COF(3)]

(Input, Real)

SN The rank of vectors x and Y (Input, Integer)

Sx The scalar value at which polynomial is evaluated (Input, Real)

SY The function value at x (Output, Real)

Method:
This routine performs single-precision polynomial evaluation from fit coefficients from solution of
Vandermonde matrix equations. It is taken from "Numerical Recipes," Section 3.5, routine POLCOE.

Design Requirements:

1. Use POLCOS to evaluate the fit coefficients.

2. Use POLSLS to evaluate the polynomial derivative values based on the computed coefficients.

Error Conditions:

None

2m

.,,,---254

, Application Utility Module: POLSLD

Entry Point: POLSLD

Purpose:

This routine performs double-precision polynomial derivative evaluation from fit coefficients.

MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL POLSLD (COF, N, X, Y)

COF The vector of coefficients such that

[Y(Z)] - [COF(l)] + Z[COF(2)] + Z**2[COF(3)]

(Input, Double Precision)

N The rank of vectors X and Y (Input, Integer)

X The scalar value at which polynomial is evaluated
(Input, Double Precision)

Y The slope of function at x (Output, Double Precision)

Method:

This routine performs double-precision polynomial derivative evaluation from fit coefficients from
solution of Vandermonde matrix equations. It is taken from "Numerical Recipes," Section 2.5, routine
POLCOE.

Design Requirements:

1. Use POLCOD to evaluate the fit coefficients.

2. Use PoLEvD to evaluate the polynomial values based on the computed coefficients.

Error Conditions:

None

255

Application Utility Module: POLSLS

Entry Point: POLSLS

Purpose:

This routine performs single-precision polynomial derivative evaluation from fit coefficients.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL POLSLS (COF, N, X, Y)

COF The vector of coefficients such that

[Y(Z)] - [COF(1)] + Z[COF(2)] + Z**2[COF(3)]
(Input, Real)

N The rank of vectors x and Y (Input, Integer)

X The scalar value at which polynomial is evaluated (Input, Real)

Y The slope of function at x (Output, Real)

Method:

This routine performs single-precision polynomial derivative evaluation from fit coefficients from
solution of Vandermonde matrix equations. It is taken from 'Numerical Recipes," Section 3.5, routine
POLCOE.

Design Requirements:

1. Use POLCOD to evaluate the fit coefficients.

2. Use POLzVD to evaluate the polynomial values based on the computed coefficients.

Error Conditions:

None

256

S Application Utility Module: PS

Entry Point: PS

Purpose:

Character function returns the character string ab the matrix precision needed for bXINIT, memory
management and others based on the machine precision

MAPOL Calling Sequence:

None

Application Calling Sequence:

PS (TYPFLG)

TYPFLG Character string, either "]"' or "C" for real or complex (Character, Input)

Method:

PS returns character string RDP on double-precision machines or RsP on single-precision machines for
input TYPFLG of P., in other words PS (' ') returns either RsP or RDP. The complex equivalent CDP or
CSP is returned if TYPFLG is C.

Desigpn Requirements:

None. Error Conditions:

1. If TYPFLG in PS is neither "iR" nor "C", Ps will return blank.

257

Application Utility Module: RDDMAT

Entry Point: RDDMAT

Purpose:

Reads a double-precision matrix entity into memory.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL RDDMAT (bATRPM, NROW, NCOL, BLRN, G1PW, PNTR, DKOR)

HATam(Input Matrix database entity (Character, Input)

NRow The number of rows in the matrix (Integer, Output)

NCOL The number of columns ii the matrix (Integer, Output)

BLKN The namne of thf _?en core block to which the data are written
(Charactir, Input)

GRPN The namn', of the open core group to which the data are written
(Character, Input)

IPNM The pointer to DKOR where the matrix data begin. (Integer, Output)

DIKOR The double-precision open core base address. (Double, Input)

Method:

The matrix is opened, its size determined and a memory block with group name mwN and block name
BLm is allocated to hold the matrix data. The matrix is then read into core with special provisions being
taken to handle the case of null columns. The matrix is then closed. The calling routine is responsible
for freeing the memory block.

Desig Requirements:

1. The matrix must be closed on calling this routine.

Error Conditions:

1. Insufficient open core memory will cause ASTROS termination.

25

m 258

Application Utility Module: RDDMAT

Entry Point: RDDMAT

Reads a double-precision matrix entity into memory.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL PDDMAT (MATNAM, NROW, NCOL, BLIM, GRPN, PNTR, DKORO

MATN, M Input Matrix database entity (Character, Input)

NROW The number of rows in the matrix (Integer, Output)

NCOL The number of columns in the matrix (Integer, Output)

BLXN The name of the open core block to which the data are written
(Character, Input)

GRPN The name of the open core group to which the data are written
(Character, Input)

PNTR The pointer to DrOR where the matrix data begin. (Integer, Output)

DKOR The double-precision open core base address. (Double, Input)

Method:

The matrix is opened, its size determined and a memory block with group name GRPN and block name
BLR is allocated to hold the matrix data. The matrix is then read into core with special provisions being
taken to handle the case of null columns. The matrix is then closed. The calling routine is responsible
for freeing the memory block.

Design Requirements:

1. The matrix must be closed on calling this routine.

Error Conditions:

1. Insufficient open core memory will cause ASTROS termination.

259

Application Utility Module: RDSMT 4
Entry Point: RDSMAT

Prose:

Reads a double-precision matrix entity into memory.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL RDSMAT (MATNM, MOW, NCOL, BLKN, GRPN, PNTR, RKOR

MATNAM Input Matrix database entity (Character, Input)

WCow The number of rows in the matrix (Integer, Output)

NCOL The number of columns in the matrix (Integer, Output)

BLKN The name of the open core block to which the data are written
(Character, Input)

GRPN The name of the open core group to which the data are written
(Character, Input)

N The pointer to DKOR where the matrix data begin. (Integer, Output)

Mt OR The single-precision open core base address. (Real, Input)

Method:

The matrix is opened, its size determined and a memory block with group name mum and block name
LIImq is allocated to hold the matrix data. The matrix is then read into core with special provisions being

taken to handle the case of null columns. The matrix is then closed. The calling routine is responsible
for freeing the memory block.

Design Requirements:

1. The matrix must be closed on calling this routine.

Error Conditions:

1. Insufficient open core memory will cause ASTROS termination.

260

Application Utility Module: SAXB

Entry-Point: SAXB

purpose:

This routine takes the double-precision cross product of vectors in a three-dimensional space.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL SAXB (A, B, C)

A is a vector (3xl) (Real, Input)

B is a vector (3xlj (Real, Input)

C On output, cross product A x B (Real, Output)

Method:

None

Design Recuirements:

None. Error Conditions:

None

261

Application Utility Module: USE TPRT

Entry Point: USE TPR

Purpose:

lb print the structural set definition table for each boundary condition contained in the USET entity.

MAPCL Calling Sequence:

CALL USETPRT (USET(BC), BGPDT(BC))

USET The name of the current boundary condition's USET entity.
(Character, Input)

BGPDT The name of the current boundary condition's BGPDT entity.
(Character, Input)

Application Calling Sequence:

None

Method:

The USET entity is opened to determine which boundary condition is to be processed. The cASE relation
is opened and the appropriate TITLE, SUBTITLE and LABEL information are obtained.

The INTID, EXTID and FLAG attributes oe the BGPDT are brought into core and sorted on internal id.
The USET record for the current boundary condition is also brought into an open core memory block.
Each tuple of the BGPDT is processed; each point in the structural set has its corresponding USET bit
mask decoded to determine to which structural sets the degree of freedom belongs. A running count in
each dependent and independent structural set is maintained and echoed.

Error Conditions:

Nnr..

262

Application Utility Module: UTCOPY

StEn Pin UTCOPY

Purpose:

To copy a specified number of contiguous single-precision words from one location to another.

Application Calling Sequence:

CALL UTCOPY (DEST, SOURCE, NWORD

DEST Array to be copied to

SOURCE Array to be copied from

NWOIRD Number of single-precision words to be copied

Method:

The source and destination arrays are operated on as integer arrays inside the UTCOPY routine. If
double-precision data are to be copied, the WORD argument must be adjusted accordingly.

s Rq uirements:

None

Error Conditions:

None

263

Application Utility Module: UTCSRT

Entry Point: UTCSRT

Purpose:

To sort a table of numbere on a four or eight character hollerith column of the table

MAPOL Calling Sequence:

None

ARplication Calling Sequence:

CALL UTCSRT (ISORT, ITEROW, BOTLIM, TOPLIM, KEYPOS, TOTI=, KEYLE•N

ISORT Array to be sorted (Any, Input)

ITBROW An array of length TOTLRW single-precision words used to store 9 table
row (Any, Input)

BOTLIM The location in the ISORT array of the first word of the first entry to be

sorted. (Integer, Input)

TOPLIM The location in the ISORT array of the last word of the last entry to be
soT ted. (Integer, Input)

REYPOS The column in the table of the first word of the 1 or two word character
field on which the sort occurs. It must be a value between 1 and TOTLE.
(Integer, Input)

TOTLE The length in single-precision words of one table row (Integer, Input)

P•,IUM The number of characters in the hollerith string. Must be either four or
eight. if it is not four, it is assumed to be eight without warning. (Integer,
Input)

Method:

The VTCSRT routine uses a QUICKSORT algorithm out lined in "The Art Of Computer Programming,
Volume 3 / Sorting And Searching" by D.E. Knuth, Pege 116. Several improvements have been made
over the pure quicksort algorithm. The first is a random selection of the key value around which the
array is sorted. This feature allows this routine to handle partially sorted information more rapidly than
the pure quicksort algorithm. The second improvement in this routine is that a cutoff array length is
used to direct further array sorting to an insert sort algorithm (Ibid. Page 81). This method has proven
tn be more rapid than alloving small arrays to be sorted by the quicksort algorithm. Presently this cutoff
ierigth is set at 15 entries, Studies should be conducted on each type of machine "n order to set this cutoff
length to m--ximize the speed of this routine. This sorting algoeithm reqtires a integer stack in which
to place link information during the sort. The maximum required size for this stack array in twice the
natural log of the number of rows in the table. At present, the uTCSB, routine has hard coded an array
of size (2,40) which provides for 1 trillion entries to be sorted.

ie irements:

None

Error Conditions:

None.

264

, Application Utility Module: UTEXIT

Entry Point: UTEXIT

Purpose:

Th terminate the execution of the system when an error occurs.

MAPOL Calling Sequence:

CALL EXIT;

Application Calling Sequence:

CALL UTEXIT

Method:

The UTEXT routine is called to cleanly terminate the execution of the ASTROS system. It calls the
DB•Tm database termination program to provide for normal closing of the database files, and dumps
the queued messages from the UTWMT utility. When these tasks have been completed, the program
execution is terminated.

Design Requirements:

None

Error Conditions:

None

265

Application Utility Module: UTGPRT

Entry Point: UTGPRT

Purpose:

7b print to the system output file the contents of special database matrix entities that have rows
associated with structural degrees of freedom.

MAPOL Calling Sequence:

CALL UTGPRT (BCID, USET(BCID), HAT1, MAT2, ... , MAT10)

BCID is the desired boundary condition number

USET is the entity defining structural sets

MATi the matrix name (up to 10)

Application Calling Sequence:

None

Method:

The matrix names are tested against the list of supported matrices. If the matrix entity matches one of
the supported entities it is printed in a format based on the structural degrees of freedom (similar to
displacement and eigenvector output from OFP). If the matrix name is not recognized, a call to tTWRT
is made instead to print the matrix out in standard banded format. The print format results in one line
of output for each grid or scalar point in the structural model for each column of the matrix. Each line
of output contains one value for each of the (up to) six degrees of freedom associated with it.

Design Requirements:

i. Only certain g-size matrices are printable in the format of this routine. The currently available
matrices are: DKUG, DMUG, DPVJ, DUG, DPGV, DUGV, DPTHVI, DPGRVI, PG,and DFDU. Other
matrices used in this routine will result in a call to the UThRT utility.

Error Conditions:

None

266

Application Utility Module: UTMCOR

Entry Point: UTMCOR

Purpose:

A special purpose utility to write an error message that insufficient open core is available in a functional
module.

MAPOL Callix Sequence:

None

Application Calling Sequence:

CALL UVMCOR (MRCOR, TYPE, SUBEAM)

MORCOR Integer containing the number of entries of type TYPE requested in the
module terminating execution. (Integer, Input)

TYPE String identifying the type of data entries requested:
= RSP for real, single-precision
= EDP for real, double-precision
= csP for complex, single-precision
= cDP for complex, double-precision
= cH for character data (Character, Input)

sUMM A character string containing the name of the module or subroutine that
is terminating execution.* Method:

The uTHCOR utility does an NMSTAT call to determine the maximum available open core. The TYPE AG
is used to determine how many single-precision words are needed to satisfy the request for WDRCOR
entries. The difference between the required spame and the maximum contiguous memory is used in a
call to UTWRT specifring the number of additional words needed. The SUBWM is also sent to UTHWW to
identify the failure more precisely. Note that TYPE=CHAR is treated by uwncOR as equivalent to RSP; the
programmer must factor the number of words per entry and input MORCOR appropriately factored. After
calling the message write utility, umcoa calls the uTEXIT utility to terminate the execution.

Design Requirements:

None

Error Conditions:

None

267

Application Utility Module: UTMINT

Entry Point: UTMINT

Purpose:

Aspecial purpose utility to initialize a matrix entity of the machine precision to a diagona! or null matrix.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTMINT (MATNM, VAL, NROC)s, NCOLS

MATNM Character name of matrix entity to be initialized. (Character, Input)

VAL Single precision real value to initialize diagonal terms. (Real, Input)

NROWS The number of rows to be initialized. (Integer, Input)

NCOLS The number of columns to be initialized. (Integer, Input)

Method:

The u~mm uses the DOUBLE function to determine if the matrix to be initialized is single or
double-precision. The requested entity is then opened and flushed. No check is made to ensure that the
requested matrix exists. Based on the value of VAL, one of several paths through the utility is taken. If
VAL is not zero, a diagonal matrix with diagonal terms given the value of vAL is created. If the non-zero
value is 1.0 and NRows equals NCOLS, the resulting identity matrix is specifically declared as such in
the WCINIT call. If the matrix is rectangular, extra columns, if any, are null. IfvAL is zero, a null matrix
of the requested row and column d'mensions is created. Note that all the matrices created by this utility
are of the machine precision as determined by the DOUBLE function.

Design Requirements:

None

Error Conditions:

None

268

Application Utility Module: UTMPRG,UTRPRG,UTJPRG

Entry Point: tITXPRG
Purpose:

To purge the contents of database entities but leave the entity in existence.

MAPOL Calling Sequence:

CALL U'13PRG (MAT1, MAT2, ... , MAT10);

CALL UTRPRG (REL1, REL2, ... , REL10);

CALL UTUPRG (UNSl, UNS2, ... , UNSIO);

Application Calling Sequence:

CALL DBFLSH (ENTITY)

MATi is the matrix entity name (Character, Input)

RELU is the relation entity name (Character, Input)

UNSi is the unstructured entity name (Character, Input)

ENTITY is any entity name (Character, Input)

Method:

The UTWRG, UTRPRG and UTP•RG MAPOL calls are defined to allow up to 10 entities of a single type to
be purged from the MAPOL sequence. The application interface is the DBFLSH routine which can take
a single argument of an entity name of any type.

Design Requirements:

None

Error Conditions:

None

269

Application Utility Module: UTMPRT

Entry Point: UTMPRT

Purpose:

lb print the contents of database matrix entities to the system output file.

MAPOL C•.ling Sequence:

CALL U14PRT (METHOD, MAT1, MAT2, ... , MIT10);

Aplication Calling Sequence:

CALL U• OT (MAT1, METHOD, IKOR, DeOR

METHOD is the print method selection (optional for the MAPOL call)
(Integer, Input)

MATi is the matrix entity name (Character, Input)

IKOR, DKOR are the base address of the open core common in single and double-preci-
sion.

Method:

IfMETHOD is zero (or absent from the MAPOL call), the matrix entity NATi is printed in a banded format:
that is, all the terms from the first non-zero term to the last nPon-zero term (inclusive) are unpacked and
printed. Null columns and groups of null columns are identified as such. Note that the MAPOL sequence
call allows for up to 10 matrix entities to be printed. A nonzero METHOD prints the column by string with
no intervening zeros.

Design Requirements:

None

Error Conditions:

None

2
2.70

Application Utility Module: uTmwRT

Entr Point: UTMWRT

This routine acts as the system message writer. It queues error messages to a temporary file for

subsequent printing to the output file. ThexsGDMP utility is used to actually print the queued messages.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UT3MT (mwEVE, NVM ., AR(MTS

LEVEL Severity level of the message
< 0 No message header is written
- 0 General Information
- 1 System Fatal Message
- 2 User Information Message
- 3 User Warning Message
= 4 User Fatal Message

NUMBER Text string containing the message number in the form: Nm.HN. LL

ARGMS Text array containing arguments for the message text.

. Method:

The uwRT routine cracks the message number Nub=R into its three component integers: NH, the
module number, md, the message number, and uL, the message lengtb('a records). If LL is omitted (ie
NuIaER-NN . MR), it defaults to one record in length.

The correct message text is then recovered from the message tile by q'uerying the HSGLEH for the module
NN to obtain the starting record and adding the message number (ma) and message length (LL) to obtain
the record numbers where the message text is stored. The message text is of the form:
, --- texct---• $.... text--$--....... I

If any $ (doller signs) exist in the message text, they are replaced by the AJ s supplied in the call
statement. Note that the final message text including the ARPUTS must be less than 128 characters in
length.

Design Requirements:

1. The pointers to the system database entity that contains the error message texts for each "module"
must be stored in memory. Currently, the array for pointer storage is 200 words long which means
that no more than 100 distinct "modules" can be defined. Note that this does not imply any limit on
the number oil error messages within a particular module's group of messages.

0
271

Error Conditions:

1. UV'WRT error: the number of modules exceeds the limit of $. This message results in program
termination and can only be fixed by increasing the size of the message pointer storage array.

2. Error in UTMT when processing message numbbr $. This message is a system level error which
usually implies that a non valid message number NN.Im. LL was passed to the module.

3. If the resultant message is longer than 128 characters, the unexpanded text is printed (with $s)
and the arguments are echoed.

2

272

* Application Utility Module: UTPAGE, UTPAG2

Entry Points: UTPAGE, UTPAG2

E.urose"

To handle paging of the system output file during execution of the system. UTPAG2 performs a page eject

based on an anticipated number of lines to print.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTPAGE
CALL UTPAG2 (N)

N Number of lines that will be printed. (Integer, Input)

ARCi4TS Text array containing arguments for the message text.

Method:

The UTPAGE routine keeps track of the total line count and the line count for the current page. The total
number of output lines allowed is maintained for use by this module. These quantities are stored in the
OUTPT1 common block. The OUTPT2 common block is also used to store the header and titling data for
the current execution. When output to the system output file is being performed, the line count is checked
by the current module against the number of lines per page, when the maximum lines per page is
reached, a call to UTPAGE causes a page advance on the system output file and the total number of
printed lines is updated. The header information can be modified by the application modules by simply
overwriting the current entries in the OUTPT2 common block. Note that all system output should be
performed using this utility module.

The UTPAG2 routine performs a page eject if the N lines will not fit on the current page.

Design Requirements:

None

Error Conditions:

None

0
2.73

Application Utility Module: UTRI.RT

Entry Point: UTRPRT

Prpose:

To print the contents of database relational entities to the system output file.

MAPOL Calling Sequence:

CALL UTEPRT (REL1, REL2, ... , REL10)

Application Calling Sequence:

CALL UTRPRT (REL, IROR, RKOR, DROR

REL is the name of the relation to be printed.

IKOR, RKOR, are open core base addresses in integer, real and double-precision.
DKOR

Method:

The relational entity REUi is printed using the full relation projection. At present, if the full projection
is too large to be output on one 132 character record, the remaining attributes are ignored. Each
attribute, regardless of type, uses a 12 character format for output. The current version of UTRPRT has
a few additional restrictions. The first is that any string attribute that is not eight characters in length
cannot be printed. The routine will ignore these attributes and write a message to that effect. In addition,
double-precision attributes are first converted to single-precision before output.

Design Requirements:

1. Only the following attribute types are supported:
INT, KINT, AMNT
RSP, ARSP
RDP
STE, KSTR (up to 8 characters)

Error Conditions:

1. Relational entity REL does not exist.

2. Relational entity REL is empty.

3. A string attribute cannot be printed when longer than the string limit eight characters.

274

* Application Utility Module: UTRSRT

Entry Point: UTRSRT

Purpose:

'lb sort a table of numbers on a real column of the table

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTRSRT (ISORT, ITBROW, BOTLIM, TOPLIM, KEYPOS, TOTLEN)

ISORT Array to be sorted (Any, Input)

ITBROW An array of length TOTLEN single-precision words used to store a table
row (Any, Input)

BOTLIM The location in the ISORT array of the first word of the first entry to be
sorted. (Integer, Input)

TOPLIM The location in the ISORT array of the last word of the last entry to be
sorted. (Integer, Input)

EYPos The column in the table on which the sort occurs. It must be a value be-
tween 1 and TOTLE. (Integer, Input)

TOTLEW The length in single-precision words of one table row (Integer, Input)

Method:

The UTRSRT routine uses a QUICKSORT algorithm outlined in "The Art Of Computer Programming,
Volume 3 / Sorting And Searching" by D.E. Knuth, Page 116. Several improvements have been made
over the pure quicksort algorithm. The first is a random selection of the key value around which the
array is sorted. This feature allows this routine to handle partially sorted information more rapidly than
the pure quicksort algorithm. The second improvement in this routine is that a cutoff array length is
used to direct further array sorting to an insert sort algorithm (Ibid. Page 81). This method has proven
to be more rapid than allowing small arrays to be sorted by the quicksort algorithm. Presently this cutoff
length is set at 15 entries. Studies should be conducted on each type of machine in order to set this cutoff
length to maximize the speed of this routine. This sorting algorithm requires a integer stack in which
to place link information during the sort. The maximum required size for this stack array in twice the
natural log of the number of rows :n the table. At present, the UTPSRT routine has hard coded an array
of size (2,40) which provides for 1 trillion entries to be sorted.

Design Requirements:

None

Error Conditions:

None

275

Application Utility Module: UTSFLG, UTSFLR, UTGFLG, UTGFLR

EntryPoints: UTSFLG, UTSFLR, UTGFLG, UTGFLR

Purose:

These routines set a named FLAG to an integer value, real value, or retrieve a value previously set.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTSFLG(INNAME , INVAL)
CALL UTSFLR (INNAE , INVAIR
CALL UTGFLG(INHHE , OUTVAL)
CALL UTGFLR(INNAME , OUTVLR)

INNANE The name of the FiaG to set (CharacterInput)

INVAL The value to set for the FLAG (IntegerInput)

iNVALR The value to set for the FLAG (Real,Input)

OUTVAL The current value of the FLAG (IntegerOutput)

OUTVLR The current value of the FLAG (Real,Output)

Method:

None

DesigRequirements:

None

Error Conditions:

None

Notes:

1. Routine SETSYS uses UTSFLG to set output file unit number, PRINT (set to second word of /4I1TS/
from YXIO) and to set the system precision PREC (=- for single-precision; -2 for double-precision)
based on the DoUBLE function. Large matrix utili.ies fetch these FLAG values by using UTGFLG.

2. Some of the DEBUG parameters are set by UTSFLG and are retrievoi by the application modules using
UTGFLG.

3. Routine TnmCCm uses UTSFLR to set system timing constants for matrix operations. The FLAGs are
named: TKUNIO, TWWXPT, ThXUT, TUXIK, CMMMP, THHXUM, TtEXPK •MCSP, T-MTDP,
TMTCSP, n4TCDP, TMLRSP, TKLRDP, .DGLCSP, meLCDP, ThCRsP, MCRDP, TWCSP, and nfCCDP.
Large Matrix utilities fetch th6se constants by using UTGFLR.

276

, Application Utility Module: UTSORT

Entry Point' UTSORT

Purpose:

To sort. a table of data on an integer column of the table

MAPOL Caýn' uSequence:

None

Application Calling Sequence:

CALL UTSORT (ISORT, ITBRCU, BOTLIM, TOPLIM, MCYPOS, TOTTIZ-1

ISORT Array to be sorted (Any, Input)

ITMROW An array of length TOTLEN singie-.recision words used to store a table
row (Any. Input)

BOTLIM The location in the ISORT array of the first word of the first entry to be
sorted. (Integer, Input)

TOPLIM The location in the iscoRT array of the last word of the last entry to be
sorted. (Integer, Input)

KEYPOS The column in the tab~o on which the sort occurs. It must be a ,;ahle be-
tween 1 and ToTL. (Integer, Input)

TOMTLN The length in single-p'recision words of one table row (Integer, Input)

Method:

The UTSORT routine uses a QUICKSORT algorithm outlined in "The Art Of Computer Programming,
Volume 3 / Sorting And Searching" by D.E. iiuuth, Page 116. Several improvements have been made
over the pure quicksort algorithm. The first is a random selection of the key value around which the
array is sorted. This feature allows this routirn te lrwnJie partially sorted information more rapidly than
the pure quicksort algorithm. The second improvement in this routine is that a cutoff array length is
used tý2 direct further array sorting to an insert qurt algorithm (Ibid. Page 81). This method has proven
to be rmore rapid than allowing small arrays to be murted by the quicksort algorithm. Presently this cutoff
length is set at 15 entries. Studies should be condar.ed on each 4ype of machine in order to set this cutoff
lenm:n to maximize the speed of this routine. This sorthi algorithm requires a integer stack in which
to place link information during the sort. The maximum -equred size for this stack array in twice the
na'ural log of the number of rows in the table. At present, the UTSOn routiie has hard coded an array
of size (2,40) which provides for 1 trillion entries to be sorted.

D Requirements:

None

"n -.,: Conditions:

None

277

Applicadon Utility Module: UTSRCH -

ERyPoint UTSRCH

Search a table of values for a-t integer key from a table that is in sorted order op. that integer key.

Aplication CallingSequence:
CALL UTSRCH * , KKEY, LIST, LF17T, LSTLEN, INCR)

-1ENR Error return if the KEY value is not found in the LIST.

REY Value being searched for in the LIST. (Integer, Input)

LIST Array in which the XEY should be located. (Any, Input)

LPM On input, the pointer to the lowest key value in the LUST. On output,
pointer to the matching value in the LIST. (integer)

XSaL Lengh of the list including 1X••M - I trailing values following the last key.
(Integer, Input)

INcR The spacing in the LIST betwee:n key values. (Integer, Input)

Method:

The tasca routine first calculates the number of key values to be searched. If there are less than a

minimum nu-nbcr of key values (presez~y 15), thoa the list is searched sequentiaily. If more than the
minimum ývdst, a binary search of the lisi. is pek•. ,med. IE the value cannot be found, the routine returns
to *WR.

Deig RMuirements:

None

Error Conditions:

None

278

Application Utility Module: UTSRT3

Entry Point: UTSRT3

Sort a table on one to three integer keys.

MAPOL Calling Sequence:

None

Application Calliing Sequence:

CALL UTSRT3 (Z, NENT, LENT, ZZ, KEY1, LKEY1, XEY2, =L-EY2, KEY3, ZKEY3, TYPE

z Array to be sorted. (Any, Input)

IST 'MThe number of rows (entries) in z. (Integer, Input)

LnT The number of words in each row of z (Integer. Input)

zz An array of length LET to be used as interm2diate storage.
(Integer, Input)

KEY1 Word offset in z for the first key on which to sort. imKy- must be in the
range 1 to LENT. (Integer, Input)

LxY1 Number of words in the first key on which to sort; use 0 if KEY is not
used. iKYl + LXEYl must be less than L=T (Integer, Input)

LEEY2 Number of words in the second key on which to sort; use 0 if 1= is not
used. KEY2 + IMEY2 must be less than im (Integer, Input)

LKEY3 Number of words in the third key on which to sort; use 0 if KEY is not
used. KZY3 + LKEY3 must be less than LENT (Integer, Input)

TYPE Type of sort to perform. (Integer, Input)
2! 0 for sorting in increasing order
< 0 for sorting in decreasing order

Method:

The UTSRT routine sorts each key in order from one to three, with multiple-word keys being treated
as though they were distinct integer keys on which the ascending or descending sort is performed.

fs r.Reauirements:

1. There is an implementation limit of no more than 200 total keys.

LKZY1 + LRZY2 + LAEY3 < 201

Error Conditions:

1. ¶ibo many sort keys cause ASSROS termination.

279

Application Utility Module: UTSRTD

Entry Point: UTSRTD

Pquose:

Sort a vector of doubkh-precision numbers.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTSRTD (Z, BOTLIM, TOPLIn)

z Double precision array to be sorted. (Double, Input)

BOTLI. The location in the z array of the first entry to be sorted. (Integer, Input)

TOPLIM The location in the z array of the last entry to be sorted. (Integer, Input)

Method:

The UTSRTD routine uses a QUICKSORT algorithm outlined in The Art Of Computer Programming,
Volume 3 / Sorting And Searching" by D.E. Knuth, Page 116. Several improvements have been made
over the pure quicksort algorithm. The first is a random selection of the key value around which the
array is sorted. This feature allows this routine to handle partially sorted information more rapidly than
Uhe pure quicksort algoritli=' The second improvement in this routine is that a cutoff array length is
used to direct further array sorting to an insert sort algorithm (Ibid. Page 81). This method has proven
to be more rapid than allowing small arrays to be sorted by the quicksort algorithm. Presently this cutoff
length is set at 15 entries. Studies should be conducted on each type of machine in order to set this cutoff
length to maximize the speed of this routine. The algorithm used in this utility requires a stack array
for storing the lPking irJornation generated during the sort. The maximum size needed for this stack
is twice the natural log of the number of entries in the array. Currently, a stack of dimension (2,40) is
hard coded which allows for 9 trillion entries to be sorted.

Rt Reu'e ts:
None

Error Conditions:

None

280

Application Utilikv Module: UTSRTI

Ent Point: UTSRTI

Purpose:

Sort a vector of integers.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTSRTI (Z, BOTLIM, TOPLIM)

Z Integer array to be sorted. (Integer, Input)

BOTLIM The location in the z array of the first entry to be sorted. (Integer, Input)

TOPLIM The location in the z array of the last entry to be sorted. (Integer, Input)

Method:

The UTSRTI routine uses a QUICKSORT algorithm outlined in "The Art Of Computer Programming,
Volume 3 / Sorting And Searching' by D.E. Knuth, Page 116. Several improvements have been made
over the pure quicksort algorithm. The first is a random selection of the key value around which the
array is sorted. This feature allows this routine to handle partially sorted information more rapidly than
the pure quicksort algorithm. The second improvement in this routine is that a cutoff array length is
used to direct further array sorting to an insert sort algorithm (Ibid. Page 81). This method has proven
to be more rapid than allowing small arrays to be sorted by the quicksort algorithm. Presently this cutoff
length is set at 1 entries. Studies should be conducted on each type of machine in order to set this cutoff
length to maximize the speed of this routine. The algorithm used in this utility requires a stack array
for storing the linking information generated during the sort. The maximum size needed for this stack
is twice the natural log of the number of entries in the array. Currently, a stack of dimension (2,40) is
hard coded which allows for a trillion entries to be sorted.

Design Requirements:

None

Error Conditions:

None

281

Application Utility Module: UTSRTR

Entry Point: UTSRTR

Purpose:

Sort a vector of real numbers.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTSRTR Z, BOTLIM, TOPLIM)

Z Real array to be sorted. (Real, Input)

BOTLfN The location in the z array of the first entry to be sorted. (Integer, Input)

TOPLIM The location in the z array of the last entry to be sorted. (Integer, Input)

Method:

The UTSRTR routine uses a QUICKSORT algorithm outlined in "The Art Of Computer Programming,
Volume 3 / Sorting And Searching" by D.E. Knuth, Page 116. Several improvements have been made
over the pure quicksort algorithm. The first is a random selection of the key value around which the
array is sorted. This feature allows this routine to handle partially sorted information more rapidly than
the pure quicksort algorithm. The second improvement in this routine is that a cutoff array length is
used to direct further array sorting to an insert sort algorithm (Ibid. Page 81). This method has proven
to be more rapid than allowing small arrays to be sorted by the quicksort algorithm. Presently this cutoff
length is set at 15 entries. Studies should be conducted on each type of machine in order to set this cutoff
length to maximize the speed of this routine. The algorithm used in this utility requires a stack array
for storing the linking information generated during the sort. The maximum size needed for this stack
is twice the natural log of the number of entries in the array. Currently, a stack of dimension (2,40) is
hard coded which allows for a trillion entries to be sorted.

Design Requirements:

None

Error Conditions:

None

282

Application Utility Module. UTSTOD, UM DTOS

Eny Point: UTSTOD, UTDTOS

Purpose:

To convert a number of entries from single-precision to double-precision and copy them from one array
into another and to convert a number of entries from double-precision to single-precision and copy them
from one array into another.

MJAPOL Calling Sequence:

None

Application Callina Sequence:

CALL TSTOD (RZ, DZ, TOTL?)
CALL UDrTOS (DZ, RZ, TOTLEN)

RZ Real array

DZ Double precision array

TOTLEN Length of array (Integer, input)

Method:

For UTSTOD, TOTLE entries of array •.z are copied to DZ and converted to double-precision.
Similarly, for UDMTOS, the entries of Dz are copied to fZ.

eDesign e men:

None

Error Conditions:

None

283

Application Utility Module: UTUPRT

Entry Point: UTUPRT

Purpose:
1b print the contents of database unstructured entities to the system output file.

MAPOL Calling Sequence:

CALM UTMPRT (ENTNAM, TYPE)

Application Calling Sequence:

None

Method:

The unstr.ctured entity ENTNA is printed to the system output file using the format specified by TYPE.
The available formaf for output are: 0, for Integer, 1 for Real, and 2 for Double Precision.

Design Requirements:

None

Error Conditions:

1. Unstructured entity ENTN.m does not exist.

2. Unstructured entity EIwnMH is empty.

3. Invalid unstructured type $ in VTUPRT print request for entity $. Valid types are: 0, 1, 2 (INT,

aSP, RDP; respectively)

284

. Application Utility Module: UTZERD

Entr Point: UTZERD

Purpose:

To initialize the contents of an array with a specified double-precision value.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTZER (ARRAY, MWODS, VALUE

Method:

N•oRDs of array ARRA are initialized with the value VALUE. Note that VALUE and ARAY must be

double-precision.

Design Requirements:

None

Error Conditions:

None

285

Application Utility Module: UTZERS I
Entry Point: UTZERS

Purpose:

To initialize the contents of an array with a specified integer or real value.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UTZERS (ARPRAY, NWOP.DS, VALUE)

Method:

NwoDs of array APPAY are initialized with the value VALUE. Both ARRAY and VALUE must be
single-precision

Desin Requirements:

None

Error Conditions:

None

286

* Application Utility Module: XISTOI

EntryPoint: XISTOI

Purpose,:

'Tb convert a string to its integer equivalent.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL XISTOI (STR, IVALVE, RC)

STR Character string representing an integer number (Input)

IVALUE Resulting integer namber (Output)

RC Return Code (Output)
i 0 if STR contained a legal integer
- 1 if sm contained an illegal character
= 2 if STR contained an illegal integer (overflow)

Method:

The character string sm is cracked one digit at a time with error checks made against the machine

maximum integer to ensure that the resultant IVALUE is a legal integer.

. Design Requirements:

1. Legal strings may contain plus (+), minus (-) and one or more decimal digits from 0 through 9.

Error Conditions:

1. Rei.arn codes

287

Application Utility Module: XISTOR

Entry Point: XISTOR

Tl convert a string to its real equivalent.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL XISTOR (STR, VALUE, RC)

STR Character string representing a real number (Input)

VAUE Resulting real number (Output)

RC Return Code (Output)
= 0 if sTR contained a legal real number
- 1 if STR contained an illegal character
- 2 if STR contained an overflow value
- 3 if STR contained an underflow value

Method:

The character string STR is cracked into its three component parts: the leading whole number, the
fractional digits and the exponential whole number. Each of the these pieces is optional. The three parts
are then combined to form the real number.

Design Requirements:

1. Legal strings may contain plus (+), minus (-), one or more decimal digits from 0 through 9 and E
or D and must contain a decimal point (.).

2. The Bulk Data style of real number representation is fully supported as is the FORTRAN E, F and
G formats.

Error Conditions:

1. Return codes

288

7. LARGE MATRIX UTILITY MODULES

Finite element structural analysis, which forms the core of the ASTROS system, requires a suite
of utilities for matrix operation- which are able to efficiently handle very large, often sparse, matrices.
This section is devoted to the documentation of the large matrix utilities in ASTROS. the designation
large comes from the assumption made by each of these utilities that the relevant matrices are stored on
the CADBB database and will be operated on in a fashion that allows them to be of arbitrary order. Other
matrix operations are available in the general utility library documented in Section 6 for small matrices
stored in memory The suite of large matrix utilities in ASTROS includes partition/merge operations,
decomposition and forward/backward substitutions, multiply/add and pure addition operations, transpose
operations and real and complex eigenvalue extracticn.

The following subsections document the interface to the large matrix utilities in two formats:
using the executive system (MAPOL) and using the FORTRAN calling sequence. In some cases, the
MAPOL language supports the particular matrix operation directly. In such cases, the user need not
make a call to the particular utility, instead, the MAPOL compiler automatically generates the correct
call to the appropriate utility. These direct interfaces are so indicated in the documentation.

289

Large Matrix Utility Module: CDCOMP

Entry Point: CDCOMP

Purpose:

To decompose a complex square matrix (A] into its upper and lower triangular factors:

[A] = EL] IV]

MAPOL Calling Sequence:

CALL DECQ4P ([A], CL], [U]);

Note that the calling sequence for cocu is through the MAPOL DECOcP module. The method is
automatically selected if Lhe input matrix is complex.

Application Calling Sequence:

CALL CDCOMP (A, L, U, IROR, RKOR, DKOR)

[A] The matrix to be decomposed (Input, Character)

EL] The lower triangular factor (Output, Character)

[U] The upper triangular factor (Output, Character)

IKOR,RKOR,DKOR The base address of the open core common block in integer, real, and dou-
ble precision arrays, respectively (Input)

Method:

The CDC~M module can decomposes complex matrices. The resultant lower, [LI, and upper, [U],
triangular factors are specially structured matrix entities having control information in the diagonal
terms. They may only be reliably used by the back-substitution module GmWS.

Design Requirements:

1. The back-substitution phase of equation solving is performed with module Gras.

2. The triangular factors ELI and [U] may not be used reliably by matrix utilities other than Ges.

Error Conditions:

None

290

* Large Matrix Utility Module: CE IG

Entry Point: CEIG

Purpose:

To solve the equation:

((Nip 2 + [Blp + EXI){U)= 0

for the eigenvalues p and the associated eigenvectors (u) where [N], [.] and [x] are mass, damping
and stiffness matrices, respectively.

MAPOL Calling Sequence:

CALL CEIG (BCID, USET, [KDD], [EDD], DOD], LANDAC, [CPHID], [CPHIDL], NPHI);

Aplication Calling Sequence:

CALL CE-G (BCID, USET, RDD, EDD, NDD, LAMDAC, CPHID, CPHIDL, OCEIGS,
IKOR, RKOR, DKOR)

SCID The boundary condition identification number (Integer, Input)

USET Entity defining structural sets for the current BC

[KDD] Dynamic stiffness matrix -D-set (Input, Character)

[EDD] Dynamic damping matrix - D-set (Input, Character)

MDD] Dynamic mass matrix - D-set (Input, Character)

L•NDAC A relation entity containing a list of extracted complex eigenvalues
(Output, Character)

[CPHID] A matrix whose columns are the complex eigenvectors corresponding to
the extracted eigenvalues (Output, Character)

[CPHIDL] A matrix containing the left complex eigenvectors (Output, Character)

NPHI The number of complex eigenvectors computed (Output, Integer)

OCEIGS The name of the output entity for statistical information (Character)

IKOR, RKO1•,DKOR The open core common base address for integer, real and double precision
arrays, respectively (Input)

Method:

The Complex Eigenvahie Analysis Module calculates the eigenvalues and eigenvectors for a general
system which may have complex terms in the mass, damping and stiffness matrices. The eigenvectors
are scaled according to the user requested normalization scheme (Mx or POIN-T).The eigenvalues p and
the eigenvectors {u } are always treated as Lomplex. These data are related to the ud displacements if
a direct formulation is used or arra related to the uh displacements if a modal formulation is used.

Pre3ently the complex eigenvalue analysis is used by manually inserting a call to module cEIG in the
MAPOL sequence. The relation EIGC wili be automatically retrieved in module CEIG and the first
method that appears in the relation will control the extraction. The Inverse Power Method or the Upper
Hessenburg Method which is selected by EIGC iata is used to solve the eigenvalue problem. (Subroutines
cInrM or HESSi). In case there is insufficient core for Upper Hessenburg Method, the Inverse Power
Method will be used if the necessary data exist on EIGc.

291

Desig! Requirements:

1. The matrices [KDD], EBD] W'n0 ý'muD] must be complex,and matrices [EDD] and [CPHIDL•] are
not required.

Error Conditions:

1. EI:C is not in the Bulk Data p',,ket.

2. LKDD] and/or (MDD] do not exist.

3. [KDD] and (LD] are not compatiblc.

4. MDD] is sing•lar in Ess method.

292

Large Matrix Utility Module: COIkR GE

Entry Point: MM~vRS

Purpose:
To merge two submatrices into a single matrix (A] column-wise:

[A] +- [All A123

MAPOL Calling Sequence:

CALL COLM•.GE ([A], [All], [A12], [CP]) ;

Application Calling Sequence:

CALL MXMERG (A, All, ZLLAK, A12, BLNR, CP, BLANK, KORE)

(A] The resulting merged matrix (Output, Character)

(Aij I The input partitions as shown above (Input, Character)

[CP] The column partitioning vector (Input, Character)

BLAW A character blank (Input, Character)

KORE The base address of the open core common block (Input, Integer)

Method:

The partitioning vector EcP] must be a column vector containing zero and nonzero terms. The [All]
partition will be placed in [3k] at positions where [cp] is zero. If either of the partitions EA11] or
[A12] is null, it may be omitted from the MAPOL calling sequence or a BLAK may be used in the
application calling sequence.

The COLPART large matrix utility module performs the inverse of this module.

ŽtRi1rements_

None

Error Conditions:

None

293

Large Matrix Utility Module: COLPART
Enti t: MXPRTN

To partition a matrix [A] into tvy submatrices column-wise:

[A] -+ (Al A12J

MAPOL CallingMeSence:

CALL COLPART ((A], [Ali], [A12], [CP]) ;

Application Calling Sequence:

CALL 1MCPRMIF. (A, All, BLANK, A12, BLAM, CP, BLANK, KORE)

[A] The matrix being partitioned (Input, Character)

[Au] The resulting partitions shown above (Output, Character)

[CP] 'The column partitioning vector (Input, Character)

BLMAK A character blank (Input, Character)

KOI4 The base address of the open core common block (Input, integer)

Method:

The partitioning vector [cP] mus. b.: a column vector containing zero and nonzero terms. The [All]
partition will then contain those columns of (A7 corresponding to a zoro value in (cP]. If either partition
is not desired, it may be omitted from the MAPOL calling sequence or a BLAM may be used in the
application calling sequence.

Desigp Requirements:

None

E'ror Conditions:

None

294

Large Matrix Utility Module: DECOMP

Entry Point: DECOMP

Purpose:

1b decompose a general square matrix [A] into its upper and lower triangular factors:

[A] = EL] [U]

MAPOL Calling Sequence:

CALL DECCHP ([A], (LI, (U]);

Application Calling Sequence:

CALL DECOMP (A, L, U, IKOR, RKOR, DKOR)

[A] The matrix to be decomposed (Input, Character)

ELI The lower triangular factor (Output, Character)

[u] The upper triangular factor (Output, Character)

IKOR,RKOR,DKOR The base address of the open core common block in integer, real, and dou-
ble precision arrays, respectively (Input)

Method:

The DECOMP module can decompose both real and complex matrices. The resultant lower, (LI, and upper,
[U], triangular factors are specially structured matrix entities having control information in the
diagonal terms. They may only be reliably used by the back-substitution module GFBS.

Design Requirements:

1. DECOMP can process both real and complex machine-precision matrices.

2. The back-substitution phase of equation solving is performed with module GFSS.

3. The triangular factors ELI and (U] may not be used reliably by matrix utilities other than GIBS.

Error Conditions:

None

295

Large Matrix Utility Module: FBS

Entry Point: FBS

Purpose:

7b perform the forward/backward substitution phase of equation solving for symmetric matrices that
have been decomposed with module SDCcRP.

MAPOL Calling Sequence:

CALL FEB (ELI, [RHS], ERHS], ISIGN);

Application Calling Sequence:

CALL FESS (L, RHS, ANS, ISIGN, IKOR, RKOR, DKOR)

[LI The lower triangular decomposition factor obtained from SDCc1P
(Input, Character)

[RES] The matrix of right-hand sides of the equations being solved
(Input, Character)

[R(S] The matrix of resulting solutions of the equations (Output, Character)

ISIGN Sign of the right-hand sides in MRNS] (+1 for positive, -I for negative)
(Input, Integer)

IKOR,RKOR,DKOR The base address of the open core common block in integer, real and dou-
ble precision arrays, respectively (Input)

Method:

Given a real symmetric system of equations

(K] (XI = ±-PJ

the SDCCHP large matrix utility is used to compute

[KI = EIl ED] EL]T

such that ED] is a diagonal matrix. This module then completes the solution for ExI as

ELI [YI = ±+P]

EL]!X] = ED]-' [Y]

If [RES] is blank, the inverse of the decomposed matrix will be returned in (ANSI.

Design Requirements:

None

Error Conditions:

None

296

. Large Matrix Utility Module: GFBS

Entry Point: GFBS

Durp os e:

To perform the forwardbackward substitution phase of equation solving for general matrices that have
been decomposed with module DECCMP.

MAPOL Calling Sequence:

CALL GFBS ([LI, (0l, [RES], [ANSI, ISIGN);

Application Calling Sequence:

CALL GFES (L, U, RES, ANS, ISIGQ, IKOR, RKOR, DKOR)

ELI , (01 The names of the lower and upper triangular decomposition factors from
DECC.P (Input, Character)

[ENS] The matrix of right-hand sides of the equation being solved
'Input, Character)

[ANSI The matrix of resulting solutions of the equations (Output, Character)

ISIGN Sign of the right-hand sides in [ANSI (Input,+1 for positive, -1 for nega-
tive) (Input, Integer)

IKOR, RKOR,DKOR The base address of the open core common block in integer, real and dou-

h ble precision arrays, respectively (Input)
Method:

Given a general, real, or complex system of equations

[I [IXI = ±+PI

the DECCUP large matrix utility is used to compute

[K] = [LI E0l

This module then completes the solution for XI] as:

[LI [YI = ±[P]

(U0 [XI = [YI

If [RHSI is blank, the inverse of the decomposed matrix will be returned in [ANSI,

Design Requirements:

None

Error Conditions:

None

297

Large Matrix Utility Module: MERGE

jEPoin_. MXMERG

Purpose:

To merge four submatrices into a single matrix [A] based on one or two partitioning vectors.
FAii I A12 -4 [A]

LA21 I A22 I
MAPOL Calling Sequence:

CALL WMEGE ([A!, (All], [A,?,I, [A12], [A22], [CP], [RP]) ;

Application Calling Sequence:

CALL -MXERG (A, All, A21, A12, A22, CP, RP, KOEM)

[A] The resulting merged matrix (Output, Character)

[Aij] The input partitions as shown above (Input, Character)

[RP] The row partitioning vector (Input, Character)

[CP] The column partitioning vector (Input, Character)

M•oE Open core base address (Input)

Method:

The partitioning vectors [CP] and ERP] must be column vectors containing zero and nonzero terms.
The [All] partition will be placed in [A] at positions where both JRP] and [CP] are zero. The EA12]
partition will be placed in (A] at positions where [RP] is nonzero and [CP] is zero. The other partitions
are treated in a similar manner.

If some of the partitions are null, they may be omitted from the MAPOL calling sequence or a character
blank may be used in the application calling sequence. In a similar manner, if the row and column
partition vectors are the same, one of them ma: be omitted or left blank in the MAPOL call. They must
both be present in the application call.
If a row or column merge alone is required in the MAPOL sequence, the special purpose MAPOL utilities
Roo z and COrMhRGE may be used.

Design Requirements:

None

Error Conditions:

None

298

, Large Matrix Utility Module: MPYAD

Entry Point: MPYAD

PuKrose:

'Tb perform the general matrix multiply and add operations as shown below:

(1) ED] = ±[A] [B]±[C] or ±[A] [B]

(2) [D] = ±[A]T[B]±[C] or = ±[A]T[B]

MAPOL Calling Sequence:

None, the MAPOL syntax supports algebraic matrix operations directly

[D] := ±[A]*[B] ±[C];

ED] :±TPAS([A])*[B]_+C];

Application Calling Sequence:

CALL MPYAD (A, B, C, D, TFLAG, SIGNAB, SIGNC, IKOR, RKOR, DKOR)

A The name of the input A matrix (Character)

B The name of the input B matrix (Character)

C The name of the input C matrix or blank (Character)

D The name of the output D matrix (Character)

TFLAG The transpose flag
= 0 no transpose
- 1 transpose matrix A
(Integer, Input)

SIGNAB The sign on the [A] [B] product
= +1 +[A] [B]
= -1 -[a][B]
(Integer, Input)

SIGNC The sign on the [c] matrix
= +1 +[C]
f 0 no [C] matrix
= -1 -[C]
(Integer, Input)

IKOR,RKOR, The base address of the open core common block as integer, real and dou-
DKOR ble precision arrays (Input)

Method:

If no [C] matrix exists, the C argument should be blank and the SIGNC argument should be zero.

Design Requirements:

None

Error Conditions:

* None

299

Large Matrix Utility Module: MXADD

Entry Point: MXADD

Purpose:

'Ib perform the general matrix addition as shown below:

[C] - a[A] + OtB]

MAPOL Calling Sequence:

None, the MAPOL syntax supports algebraic matrix operations directly.

tC] :- (a) [A] ± (+) JB]

Application Calling Sequence:

CALL MXADD (A, B, C, ALPHA, BETA, DKOR, IKOR)

A The name of the input A matrix (Character)

B The name of the input B matrix (Character)

C The name of the output C matrix (Character)

ALPHA The constant complex multiplier of matrix A. Real array of length 2, the
first word is the real part of the constant, the second is the imaginary
part. (v,.put,Complex)

BETA As ALPHA for the B matrix. (Input,Complex)

DKOR, 1KoR The base address of open core common block as double precision and inte-
ger, respectively (Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

300

* Large Matrix Utility Module: PARTN

Entry Point: MXPRTN

Purpose:

To partition a matrix [A] into four submatrices based on one or two partitioning vectors:

[A] -4 Al IA1
[A21A22 I

MAPOL Calling Sequence:

CALL PARTN ([A], [All], [A21], [A12], [A22], [CP], [ERP]);

Application Calling Sequence:

CALL MXPRTN (A, All, A21, AI2, A22, CP, RP, KORE)

[A] The matrix to be partitioned (Input, Character)

[Aij] The resulting partitions as shown above (Output, Character)

[RP] The row partitioning vector (Input, Character)

[CP] The column partitioning vector (Input, Character)

KORE The base add-ess of the open core common block (Input, Integer)

Remarks:

The partitioning vectors [CP] and [RP] must be column vectors containing zero and nonzero terms.
The [All] partition will be formed from [A] at positions where both [RP] and [cP] are zero. The
[A12] partition will be formed from [A] at positions where [EP] is nonzero and [CP] is zero. The other
partitions are treated in a similar manner.

If some of the partitions are not desired as output, they may be omitted from the MAPOL calling sequence
or a character blank may be used in the application calling sequence. In a similar manner, if the row
and column partition vectors are the same, one of them may be omitted or left blank in the MAPOL call.
They must both be present in the application call.
If a simple row or column partition is required in the MAPOL sequence, the special purpose MAPOL
utilities ROWPART and COLPART may be used.

Design Requirements:,

None

Error Conditions:

None

301

Large Matrix Utility Module: REIG

Entry Point: REIG

Purpose:

7b solve the equation:

[[K] - X.D4] I{u) = 0

for its eigenvalues,), and their associated eigenvectors {.P}.

MAPOL Calling Sequence:

CALL REIG (ITER, BCID, USET(BCID), [K], [MI, [WR], [EM], LAMa, [PHI], [MI], NPHI);

Application Calling SeQuence:

CALL REIG (ITER, ECID, USET, K, M, MR, DM, LAMA, PHI, MI, OEIGS, REOR, DKOR)

ITER The design iteration number (Integer, Input)

BCID The boundary condition identification number (Integer, Input)

USET The entity defining structural sets for the current boundary condition

[K], [D] The stiffness and mass matrices (Input, Character)

[MR] The rigid body mass matrix (Input, Character)

[DH] The rigid body transformation matrix (Input, Character)

LAM A relational entity containing a list of extracted eigenvalues
(Output, Character)

[PHI] A matrix whose columns are the eigenvectors corresponding to the ex-
tracted eigenvalues (Output, Character)

IMI] The modal mass matrix (Output, Character)

MHKI The number of eigenvectors computed (Integer, Output)

OZIGS The name of the output entity for statistical information (Character)

RKOR,DKOR The open core common base address for real and double precision arrays,
respectively (Input)

Method:

The matrices [K] and [m] must be real and the reduced mass matrix [MR] and the rigid body
transformation matrix [DM] are not required. The REIG module must query the CASE relational entity
to determine which set of EIGR eigenvalue extraction data to use. Because of the multidisciplinary
nature of the code, REIG assumes that, if called, an eigenanalysis is required. It uses the zIGR data that
correspond to the selection for the current boundary condition, BCID.

Design Requirements:

None

Error Conditions:

None

302

Large Matrix Utility Module: ROWMERGE

Entry Point: MXMERG

Purpose:

To merge two submatrices into a single matrix [A] row-wise:

[A] <[Al]

MAPOL Calling Sequence:

CALL ROWMER•G ((A], All], [A21], •RP]);

Application Calling Sequence:

CALL MXRG (A, All, A21, BLANK, BLANK, BLANK, RP, KORE)

[A] The resulting merged matrix (Output, Character)

[All], EA21] The input partitions as shown above (Input, Character)

ERPI The row partitioning vector (Input, Character)

BLANK A character blank (Input, Character)

KORZ The base address of the open core common block (Input, Integer)

Method:

The partitioning vector [RPJ must be a column vector containing zero and nonzero terms. The EAll]
partition will be placed in [A] at positions where [RP] is zero. If either of the partitions [All] or [A12]
is null, it may be omitted from the MAPOL calling sequence or a BLAK may be used in the application
calling sequence.

The ROWPART large matrix utility module performs the inverse of this module.

Design Requirements:

None

Error Conditions:

None

303

Large Matrix Utility Module: ROWPART

Entry Point: MXPRTN

Purpose:

Tb partition a matrix [A] into tw& submatrices row-wise:

[A -An J

MAPOL Calling Sequence:

CALL ROWPART ([A], [Al 1 , [A211, [RPI);

Application Calling Sequence:

CALL MXPRTN (A, All, A21, BLANK, BLANK, BLANK, RP, KORE)

[A] The matrix being partitioned (Input, Character)

[Aij I The resulting partitions shown above (Output, Character)

ERP] The partitioning vector (Input, Character)

BLANK A character blank (Input, Character)

!KORE The base address of the open core common block (Input, Integer)

Method:

The partitioning vector [rPl must be a column vector containing zero and nonzero terms. The [All]
partition will then contain those columns of [A] corresponding to a zero value in [PP]. if either partition
is not desired as output, it may be omitted from the MAPOL calling sequence or a BLANK may be used
in the application calling sequence.

Design Requirements:

None

Error Conditions:

None

304

4 Large Matrix Utility Module: SDCOMP

Entrey Point: SDCOMP

Purpose:

7b decompose a symmetric square matrix [A] into the form:

[A] -- E [L [D] ELIT

where EI] is a lower triangular factor and the diagonal matria and DI] has been stored on the diagonal
of EL].

MAIPOL Calling Sequence:

CALL SDCCH (QA], ELI, USET(BC), SETRIhM);

Application Calling Sequence:

CALL SDCAM4P (A, L, CHLSKY, USET, SETNAM, 7KOR, RKOR, DKOR)

[A] The matrix to be decomposed (Input)

ELI The lower triangular factor (Output)

CELSKY The input selection of Cholesky decomposition
0 no Cholesky
1 1 use Cholesky

(Integer)
USET The entity defining structural sets for the current boundary condition

sOAN The current structural set name

IKOR, PKOR,DKOR The base address of the open core common block in integer, real and dou-
ble precision arrays, respectively (Input)

Method:

The SDCCHP module can decompose real and complex symmetric matrices. The resultant lower factor,
(LI, is a specially structured matrix entity having the terms of ED] on the diagonals. It may, therefore,
only be reliably used by the back-substitution module, YEs.

Design Requirements:

None

Error Caiditions:

1. Matrix A is singular.

305

Large Matrix Utility Module: TRNSPOSE

Ent=y Point: TRNSPZ

Purpose:

Tl gener.,te the transpose of a matrix.

[A] --, [A] T

MAPOL Callin 7 Sequence:

CALL TRHIPOSE ([A], [ATRANSl);

Application Calling Sequence:

CALL TRNSPZ (A, ATRANS, IKOR, DKOR)

[A] The name of the input matrix to be transposed (Input, Character)

[ATRANS] The name of the resulting transposed matrix (Output, Character)

IKOR, DROR The base address of the open core common block in integer and double
precision, respectively. (Input)

Method:

The output matrix entity, [ATRWS], must already exist on the database. It will be flushed and loaded
by the transpose utility. All matrix types and precisions are supported. As a special feature, the aser
controlled 11th through 20th words of the num array for the input matrix are copied onto the transposed
matrix.

Design Requirements:

1. The spill logic for the utility has a limit of eight scratch files to perform the transpose. If the transpose
cannot be performed in eight passes using the available memory, the utility will terminate.

Error Conditions:

None

306

8. THE CADDB APPLICATION INTERFACE

The Computer Automated Design Database (CADDB) is the heart of the ASTROS software
systera. It has been designied to provide the structures and access features typically required for scientific
soft-* are applications development. CADDB can be viewed as a set of data entities that are accessible by
a suite of utility routines alled the application interface as shown below:

APPLCA TION INTERFACE

SYSTEM V

RFELATIONAL UNSTRUCTURED

ENTITIE

There are three types of entities: Unstn•awred., Relational, and Matrix. These are describcd

individually in the following paragraphs.

Unstructured Entities.

Unstructured entities form the least organized data type that may be used. An unstructured
entity may be considered as a set of variable length records which have no predetermined structure and
which may or may not have any relationship with each other. This is illustrated by the following:

307

-1 DATABASEENT4 E N T2

2 MM

3 END

4 END

Unstructured entities are typically used when "scratch" space is needed in an essentially sequen-
tial manner. Two important points, however, are that each record may be accessed randomly if the entity
is created with an index structure, and that records may be read or written either in their entirety or only
partially. Details of these features are discussed in Subsection 8.6.

Relational entities are very highly structured tables of data. The rows of the table are called
entries or tuples and the columns are called attributes, as shown below:

ENT1] I NT]2ENT DATABASE

ENT4 IN
,,, 6

-< GID X Y z ENTRIES
101 0.0 0.0 0.0

ATTRIBUTES 102 1.0 0.0 0.0

103 1.0 1.0 0.0
104 0.0 1.0 0.0

308

The definition of the attributes and their types is called the schema of the relation. Because the
schema is an inherent part of a relation's data structure, each attribute may be referred to by its name. In
addition, because each of the attributes is independent of the others, it is possible to retrieve or modify
only selected attributes by performing a projection of the relation. Attributes may also be defined with
keys. If an attribute is keyed, an index structure is built that allows rapid direct access to a given entry.
There is a restriction, however, that a keyed attribute must have unique values for all entries.

Another powerful feature is the ability to retrieve entries that have been qualified by one or more
conditions. A condition is a constraint definition for an attribute value. For instance, in the example
above, the condition of X= 1.0 might be specified prior to data retrieval. Only those entries that satisfy the
given constraint or constraints are then returned.

Relational entities are used when the data they contain will be accessed or modified on a selective
basis. This eliminates the need to move large sequential sets of data back-and-forth when modifying or
retrieving only small amounts of data. An additional feature available with CADDB is the "blast" access
of a relation. This allows the data to be treated sequentially while maintaining the relational form. these
and other features are fully described in Section 8.5.

Matrix Entities.

One of the most important data structures encountered in engineering applications is the matrix.
Matrix algebra forms the basis for the finite element method employed by ASTROS. The efficient per-
formance of this algebra, along with additional operations such as simultaneous equation solvers, eigen-. solvers and integration schemes, is critical to such a software system. CADDB represents matrices in
packed format. This format has been used extensively by the NASTRAN system for the last 30 years
with excellent success. The representation of a matrix on CADDB is shown below:

rWWZZ ~DATABASE

1 ROW n ... D n

3 ROW n ... END
4 ROW n ... ROW n].. END

5 ROW n ... EN

Referring to the figure, note that only the non-null columns of a matrix are stored, thus reducing, disk space utilization. Within each column are one or more strings. A string is a sequential burst of data

309

entities with a header that indicates the first row position of the data in the given column and "n", the
number of terms in the string, this representation allows a further data compression in that zero terms in
the column are not physically stored.

A complete library of matrix utilities is available within the ASTROS #ystem. These utilities are
coded to use to use the packed format to its best advantage. All matrix data should be stored in this
manner. Many access methods are available for matrix entities. A matrix may be positioned randomly to
a given column, an entire column may be read or written, individual terms may be read or written and so
on. These functions are described in Subsection 8.4.

310

. 8.1. CADDB BASIC DESIGN CONCEPTS

The CADDB implementation was influenced by three fundamental design goals: Open-endedness,
performance, and structured programming methodology. The basic internal design of the database im-
poses no unrealistic restrictions, a virtually unlimited number of different databases and entities can be
processed simultaneously as long as there is memory to hold the required information. The only fixed
restrictions are those imposed by the computer hardware and not the design. For example, the maximum
number of blocks in the entire database is 231 and the maximum number of words in each entity is also
231. This restriction follows from the 32-bi-t word length of some of the target machines.

The performance goals of the database had to address both I/O and CPU issues. The optimization
of 1/0 performance is usually in direct conflict with minimal memory utilization. When faced with an I/O
versus memory conflict, reduced 1/0 was generally selected. Summarized in the following are typical
design decisions impacted by this issue:

1. All bit maps required by the database are kept in memory to reduce I/O requirements of free
block management.

2. Directory pointers for all entities, open or closed, are kept in memory to reduce directory search
time.

3. While any type of entity is open, all schema definition data are kept in memory.

CADDB was designed in top-down structured manner. It is divided into functional modules that
simplify implementation, testing, and maintenance. Generically, the functions of these modules are:

1. ENTITY CODE: Separate groups of routines are provided for each of the three entity types.

2. RELATIVE BLOCK: These routines process the block allocation tables to convert relative block
numbers used by entity routines into physical blocks.

3. BUFFER MANAGEMENT. All buffer management is done by these routines.

4. FREE BLOCK MANAGEMENT. The allocating and freeing or physical blocks is performed here.

5. INDEX PROCESSING: All index processing is done by these routines. Two sets of routines, one
for sequential indices and one for binary indices, are provided.

6. DIRECTORY: A separate set of routine is provided to do all directory processing.

7. MEMORY MANAGEMENT: All memory management is provided by these routines.

This highly modular design provides several advantages. The most important is that new features can be
added with a minimal effect on the existing code. For emample, a double buffering scheme could be added
to reduce I/O wait time by simply modifying the buffer management routines.

311

8.1.1. Physical Structure

Each physical database is comprised of a set of disk files. An index file and at least one data file
are required for each database. The index file contains the necessary control information to find entities
on the database. This information includes the following:

1. DIRECTORY: Contains information required to process each entity.

2. FBBM: The Free Block Bit Maps (FBBM) are used to keep track of the blocks which are allocated
and free.

3. BAI. The Block Allocation Table (BAT) is used to keep track of the physical blocks used by each
entity.

4. SCHEMA: The SCHEMA defines the attribute structure for each relational entity.

5. INDEXK Each matrix or unstructured entity can have optional indexes built to allow quick access
to any column or record. Relational entities can also have indices built for any attribute.

The data files are used to store the actual information in each entity. Multiple data files can be used to
split the database over several physical disk drives. Free block allocation is performed in a cyclic fashion
among the data files to balance the 110 load on the system.

8.1.2. Improvements Over Other Databases

The design of a new ASTROS database was required to address deficiencies in existing available
codes. The GINO I/O system of NASTRAN, while efficient, is a file management system, not a database.
Separate files are required for each entity and only matrix and anstructured entities are supported. the
RIM database, developed by the IPAD program for NASA, supports the relational entity type but does not
adequately support either unstructured or matrix types. Additionally, the RIM system suffers from severe
restrictions and performance penalties. The following summarize the functional improvements that make
CADDB superior to these existing systems:

1. The three entity types have been combined into one database in as consistent a manner as
possible.

2. The dynamic memory manager (See Subsection 8.3) allows the database to be open-ended
without overburdening an application code which also makes large demands on memory.

3. Multiple databases and as many entities as memory allows may be processed simultaneously.

4. Multiple jobs can have READONLY access to the same database. With CADDB, a system
database, as described in Chapter 3.2, is provided. This database contains data required by each
ASTROS job.

5. An improvement over GINO allows existing records or columns of unstructured and matrix
entities to be rewritten without destroying any other data in the entity.

6. "Garbage-collection" of freed blocks is handled automatically by the database. The dump and
restore requirement of some databases, such as RIM, is eliminated.

312

7. The concept of projections has been added to all relational entity access calls. This allows
application codes to process only those attributes needed for each entry of the relation. This
allows a new attribute to be added to a relation without impacting previously coded modules
not requiring the new attribute.

8.1.3. Memory Requirements

As discussed in the introduction to this section, trade-offs in design between memory and I/O
performance were generally made in favor of I/O. In this subsection, the general memory requirements of
CADDB are summarized. The equations below use the following symbols:

I the index block file size in words
D the data file block size in words
E the number of entities on all open databases
P the number of physical files in the database
N the number of attributes for a relation

The following memory is required:

1. For the entity name table: Mi = 10E

2. For each open database: M2 = 21 + 6P + I(P+1)

3. For each open entity without indexing: M3 = 40 + D + I

4. For each open entity with indexing: M4 = 40 + D + 31

5. For each relation, and additional requirement is: M5 = 49N

Using an .ndex file block size of 256 words and a data file block size of 2,048 words, these
relations indicate that, for a typical engineering module, the memory requirement would be approxi-
mately 4,000 words greater than that required by the NASTRAN GINO system.

This is felt to be a small trade-off for the significant capability enrichment.

313

8.2. THE GENERAL UTILITIES

There are nine general CADDB utility routines as shown below:

VIBROUTINE FUNCTION

DBCREA Creates a database entity
DBOPEN Opens a database entity prior to 1/0
DBRENA Renames a database entity
DEEQUV Equivalences two entity names
DBSWCH Interchanges the names of two entities
DBDEST Destroys, or removes, an entity and all of its data from the database
DBFLSH Removes the data contents of an entity
DBCLOS Terminates 1/0 for an entity
DBXS Checks for existence of an entity
DBiNEMP Checks for existence of data in an entity

General Utilities are those which apply to any entity type. Two additional general data utilities are
DBINIT and DBETE. These are system level modules and are presented in Chapter 4.

Creating a New Entity,

To create a new database entity, the routine DBCEA. is used. This utility enters the new entity
name and its type into the database directory. Although there are three entity classes, there are two
options for both matrix and unstructured entities, indexed or unindexed. Typical calls to create the three
entities pictured in Subsection 8.1 could be:

CALL DBCREA ('GRID', 'REL')

CALL DBCREA ('STUF', 'IUN')
CALL DBCREA ('MATX', 'MAT')

The ASTROS executive system automatically creates all database entities that are declared in
the MAPOL program. An application programmer usually creates only scratch entities within a given
module.

Accessin. Entities,

Prior to adding new data, modifying existing data or accessing old data for an entity, the entity
must be opened, and when 110 is completed it must be closed. This is uine to allow optional use of
memory resources as discussed in Subsection 8.1. Using the examples as before, 1/0 is initiated by the
calls:

CALL DBOPEN ('GRID', INFO, 'R/W', 'FLUSH', ISTAT)
CALL DBOPEN ('STUFF', INFO, 'RO', 'NOFLUSH', ISTAT)
CALL DBOPEN ('MAXT', INFO, 'R/W', 'FLUSH', ISTAT)

The array INFO is very important. It contains 20 words that provide information about the data
contents of the entity, such as the number of attributes and entries in a relation, the number of records in
an unstructured entity and the number of columns in a matrix. The first 10 words of INM are used by
the database. The programmer may use the second 20 words for any purpose desired. The INFO array is

314

, then updated when the entity is closed. As an option, access to an entity may request that the data
contents of the entity be destroyed, or FLushed, when opening it.

When all activity is completed for a given entity, it must be closed to free memory used for 1/0.
This is done with a call such as:

I CALL DBCLOS ('GRID') I

315

Database General Utility Module: DBCLOS

Entry Point: DBCLOS

Purpose:

To terminate I/O from a specified database entity.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBCLOS (ENTNAM)

ENTNAH The name of the entity (Character, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

3

316

* Database General Utility Module: DBCREA

Entry Point: DBCREA

Purpose:
Tr create a new data entity.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBMCA (MNMM, TYPE

ENTNM The name of the entity (Character, Input)

TYPE The entity type (Character, Input)

' EL' Relation

I MAT' Matrix

, I3AT' Indexed matrix
" UN' Unstructured

, IUN, Indexed unstructured

Method:

None

Design Requirements:

None

Error Conditions:

None

317

Database General Utility Module: DBDEST I
Entry Point: DBDEST

Purpose:

To destroy a database entity, removing all data from the database files and the entity name from the
list of entities.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBDEST (EITK)

m The name of the entity (Character, Input)

Method:

None

Design Requirements:

1. ZNTHM may not be open.

Error Conditions:

None

318

Database General Utility Module: DBEQUV

Entry Point: DBEQUV

Purpose:

To equivalence two entity names to point to the same data. After a DBEQUV operation, the two names
are synonymous. The only way to break an established equivalence is to destroy one of the entities which
destroys the equivalences along with the entity and its data.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBEQUV (NAME1, NAME2

NAME1 Name of currently existing entity (Character, Input)

NAME2 Name to be made equivalent to iwam (Character, Input)

Method:

None

Design Requirements:

None. Error Conditions:

None

319

Database General Utility Module: DBEXIS

Entry Point: DBEXIS

To determine if a given entity already exists on the database.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBEXIS (ENTHAM, EXIST, ITYPE)

ENTHAM The name of the entity (Character, Input)

EXIST Status of the entity (Integer, Output)
0 does not exist
1 exists

ITYPE The entity type (Integer, Output)
0 undefined entity
1 relation
2 matrix
3 indexed matrix
4 unstructured
5 indexed unstructured

Method:4

None

Design Requirements:

None

Error Conditions:

None

3
320

Database General Utility Module: DBFLSH

Entry Point: DBFLSH

Purose:

To delete, or flush all of the data from a database entity. The entity itself remains in existence, but is
empty.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBFLSH (ENTNM()

ENTHM The name of the entity (Character, Input)

Method:

None

Design Requirements:

1. EwnTN may not open.

Error Conditions:

None

321

Database General Utility Module: DBNEIMP

Entry Point: DBNEMP

Purpose:

To return a logical TRUE or FALSE depending on whether an entity has entries, records or columns
(TRUE) or if it is nonexistent or empty (FALSE).

MAPOL Calling Sequence:

None

Application Calling Sequence:

DEM6P (MqTfmm)

zmN xM The name of the entity (Character, Input)

Method:

DMOM is a LOGICAL FUNCTION that returns T= if and only if the named EmmW exists and
contains entries if relational, columns if matrix or records if unstructured. Any other condition returns
a FALSE.

Design Requirements:

1. ENTWO may not open.

Error Conditions:

None

322

* Database General Utilty Module: DBOPEN

Entry Point: DBOPEN

Purpose:

To open a database entity foi .ubsequent I/O operations.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBOPEW (ZNAM, INFO, RW, FLUSH, ISTAT

ENTNA1 The name of the entity (Character, Input)

INFO Array of length 20 words containing entity information (Integer, Output)

INFO RELATION MATRIX UNSTRUCTUREDI

1 TYPE TYPE TYPE

2 NATTR NCOL NRC

3 NMAX REC LEN
NNTRY NROW in words

4 - PREC

5 - DEN*1000

6 - FOEM

7 Maximum number of
nonzero terms in any column

8 Maximum number of strings
in column

9 - Maximum length of a string -

10 -

Type Codes (TYPE) are: Form Codes (FORM) are:

1 REL 1 rectangular

2 MAT 2 symmetric

3 IMAT 3 diagonal

4 UN 4 identity

5 IUN r,5 square

323

Precision Codes (PREC) are:

1 real, single-precision

2 real, double-precision

3 complex, Eingle-precision

4 complex, double-precision

RW Type of access (Character, Input)
' R/W' Read/Write access
r Ro' Read only access

FLUSH Flush option (Character, Input)
, FLUSH' flush entity on open
, NOFLUS' do not flush entity on open

ISTAT Return status (Integer, Output)
0 entity opened
101 entity does not exist

Method:

None

Design Requirements:

1. The INo array is loaded on the call to DBOPEN and not subsequently modified. The programmer

may use the second 10 words for any purpose. DECLOS will write the current iNFo data to the

database.

2. Multiple open entities must not share INFO array locations. Care must be taken not to modify the

first 10 words within the application.

Error Conditions:

None

324

Database General Utility Module: DBREKA

Entry Point: DBRENA

Purpose:

To rename a database entity.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBRZNA (O E nnaM, k(hrtIu

OwwO Existing entity name (Character, Input)

:New entity name (Character, Input)

Method:

None

Design Requirements:

1. The entity may be open.

Error Conditions:

* None

325

Database General Utility Module: DBSWCH

Enty Point: DBSWCH

lb switch the names of two database entities.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL DBSWCH (ENTNAM)

NAWE1 Name of first entity (Character, Input)

NtAM2 Name of second entity (Character, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

326

8.3. THE DYNAMIC MEMORY MANAGER UTILITIES

The dynamic memory manager (DMM) is a group of utility routines that allow the applications
programmer to work with open-ended arrays in memory. This is important for two reasons. The first is
that memory is not wasted by fixed length FORTRAN arrays. The second reason is to allow algorithms to
use spill-logic. Spill-logic is code that can perform cperations on only that portion of the required data

that fits in memory at a given time. Free memory, (that beyond the fixed code and data areas) may be

organized into any number of blocks, and groups of blocks, as shown below:

EXECUTABLE CODE
AND DATA ,'

.. ..•$;• 2" '"

ILOCAL ARRAYS "*' ' '

FREE

MEMORY

ALLOCATED REGION SIZE

This dynamic memory area can be viewed as a type of virtual memory those paging is under control of the
programmer. Static memory languages, such as FORTRAN, are very inefficient users of memory. The
DMM can eliminate some of this inefficiency. As an example, consider a routine to perform the matrix
addition

[A] + [B] = [C]

defined by the equations

Cij = Aij + Bij

327

Three possible implementations are shown, all based on the assumption that the available mem-

ory, after all other components of the program are loaded, is 30,000 words.

The Classical FORTRAN Aniroach.

The classical brute-force FORTRAN solution to this pijblcm is to s•c that 3 arrays eazh dimen-
sions 100 by 100 will fit perfectly in the available memory. The routire i, duly roded aK:

DIMENSION A (100, 100), B (100, 100), C (100, 1t,0)
C
C ASSUME THE MATRICES ARE ALL N*M
C

DO 200 I=1, N
DO 100 J=1, M

C(I,J) = A(I,J) + B(I,J)

100 CONTINUE
200 CONTINUE

With this algorithm, the matrix sizes are fixed at 100 by 100. If the matrices are only 3 by 3, 99
plus percent of the memory is wasted. Further, although a 20 by 500 matrix would occupy the same
10,000 words, it cannot fit into the predefined array. This latter problem can easily be fixed by storing the
matrix in a singly dimensioned array of 10,000, which already implies the programmer must manage the
array.

By using the dynamic memory manager both problems shown in the last section disappear.
Consider the code segment:

COMMON/MEMORY/ Z (1)
C
C ALLOCATE MEMORY FOR EACH MATRIX
C

CALL MMBASE (Z
CALL MMGETB ('AMAT', 'RSP', N*M, 'MAXT', IA, ISTAT)
CALL MMGETB ('BMAT', 'RSP', N*M, 'MAXT', IB, ISTAT)
CALL MMGETB ('CMAT', 'RSP', N*M, 'MAXT', IC, ISTAT)
DO 100 I = 1, N*M

II =I - 1
Z (IC + II) = Z (IA + II) + Z (IB + II

100 CONTINUE

This code allows all 30,000 words of memory to be used regardless of the shape of the matrices. Addition-
ally, it uses exactly the memory required if the operation is smaller than the available memory.

3
328

. The S&ill-logic Approach.

Spill-logic can be implemented in a number of ways using the matrix utilities described in
Subsection 8.4. When spill-logic is used, only those portions of the matrices involved in an operation are
brought into memory. Operations are then performed and intermediate or final results stored on the
database. With this coding technique, problems of virtually unlimited size may be addressed. There are
nine DMM utilities that may be use6 by an application programmer. Each routine is prefixed with the
lett rs; MYM. A summary of these routines is shown below.

SUBROUTINE FUNCTION
-- --• • i m m• i ii i

I MY-Bz Used by each module to define the location of the memory base address

MM__ _ _ Prints a table of allocated memory blocks

M0FR0 G Frees allocated memory by individual blocks or by groups of blocks

MIOGTB Gets a block of memory of the specified type and length

MMBDU Reduces the size of a block

OIdBQUZ Compresses memory I/O areas

,, SM ,, Returns the maximum contiguous memory that is available to the module

329

Database Memory Manager Utility Module: MMBASC

Entry Point: MbMBASC

Purose:

'lb define the base address of dynamic memory that contains character data.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL M.SBASC (ARAY, LEN

SThe nam e of a character array from which m em ory pointers will be m eas-
ured

LEN The length of the character string elements in AfuAY

Method:

None

Design Requirements:

1. Only one call to btmsc may be made in a module.

Error Conditions:

None

330

NoneDatabase Memory Manager Utility Module: MMAE

Entry Point: MMBASE

Purpose:

To define the base address of dynamic memory of reference to an array.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MMBASZ (mY)

ARM The name of an array from which memory pointers will be measured

Method:

None

Design Requirements:

1. This routine must be the first called in each module that uses the memory manager.

2. It cannot be used for memory containing character data (see HHEAsc).

Error Conditions:

* None

331

Database Memory Manager Utility Module: MMUMP

Entry Point: MIUMP

Purpose:

'lb print a formatted table of allocated memory Oocks to the output file.

MAPOL Calling Sequence:

None

Applicati•a Calling Seguence:

CALL MMM

Method:

None

Design Requirements:

1. The utility assumes the ?INIT has been called to initialize the open core memory block.

2. In some cases of corrupted memory, the use of this routine may result in an infinite loop.

Error Conditions:

None

332

Database Memory Manager Utility Module: bW4FREE

Entry Point: MRE

Purpose:
Tb free a memory block for subsequent use.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL 1*WREE (ELK)

BLX Name of block to be freed (Character, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

333

Database Memory Manager Utility Module: NdFPEG

Entry Point: bMFFREG

Purpose:

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL)4ffG (GRP

GRP Name of the group of blocks to be freed (Character, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

3

384

* Database Memory Manager Utility Module: MMGETB

Entry Point: b24GETB

Purpose:

To allocate a block of dynamic memory.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MbGETB (BK, TYPE, LEN, GRP, IPNT, ISMAT)

BLK The name assigned to this memory block
If the block name is blank, the block is a special unnamed memory block
in that it can only be freed with a mZ*JmG call and bMamU calls are not
allowed for the block. (Character, Input)

TYPE The data type of the memory block: (Character, Input)

' RSP' real, single-precision or integer

' DP' real, double-prc-ision

1CcP' complex, single-precision

'CDP' complex, double-precision

'CHAR' character

LW Length of block measured in the units of TYPE (Integer, Input)

CiAMP Name defining a group to which this block belongs (Character, Input)

: PIT Pointer to the allocated block of memory referenced to the base location
(Integer, Output)

ISTAT Status return
0 memory successfully allocated
101 insufficient memory aveilable

Method:

None

Design. Requirements:

None

Error Conditions:

1. Attempt to allocate a memory block of zero length.

2. Attempt to allocate a duplicate block/group name.

0
335

Database Memory Manager Utility Module: MMREDU

Entry Point: b-E DU

Purpose:

To reduce the size of a memory block that is larger than needed.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UbWEDU (BLK, TYPE, LENGTH)

BLX The name assigned to this memory block (Character, Input)

TYPE The data type of the memory block: (Character, Input)

, RSP' real, single-precision or integer

I PDP, real, double-precision

I CSP' complex, single-precision

I CDP' complex, double-precision

SCHAR' character

LENGTH Length to be freed measured in units of TYPE (Integer, Input)

Method:

None

Desian Requir-ements:

None

Error Conditions:

1. Attempt to reduce memory block to zero length.

336

Database Memory Manager Utility Module: MMSQUZ

Entry Point: 4MSQUZ

Purpose:

Tb squeeze, or compress, any unused 1/0 buffer space used by the databa~se.

MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL MSQUZ

Method:

None

Design Requirements:

1. This routine should not be used within an application routine, it is an executive memory manage-
ment function.

Error Conditions:

None

337

Database Memory Manager Utility Module: WSTAT

Entry Point: MMSTAT

Purpose:

To determine the maximum number of contiguous single-precision words available for dynamic alloca-
tion.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL (MSTST (CONTIG

CONTIG The maximum number of contiguous single-precision words available (In-
teger, Output)

Method:

None

Design Requirements:

None

Error Conditions:

None

3

338

. 8.4. UTILITIES FOR MATRIX ENTITIES

The matrix entity utilities are designed to provide a number of different methods for accessing
complete columns, portions of columns, or single terms of a matrix. The use of these various methods
depends on the source of data defining the matrix and the intensity of the computational algorithm. The
routines available are:

SUBROUTINE FUNCTION

M_____T Initializes a matrix entity for I/O

MXFOIAM Change the form of a matrix

MHaos
ammpos Positions to a specified matrix column

MONIPS

NXSTAT Gets matrix column information

H"PAK Packs a column of a matrix

WWUP Unpacks a column of a matrix

MXRKTI

MXPT Packs a column of a matrix either term-by-term or by partial
column

"KTm

Is 4XPKTF

MXUPTI

MUMP Unpacks a column of a matrix either term-by-term or by partial
column

NXWPTH

MXUPTF

8.4.1. Creating a Matrix.

After a matrix entity has been created it must be initialized before it can be used. The WMIIT

call provides information required for the storing of data into the matrix. For example, to create and
initialize a matrix entity for a real, single-precision, symmetric matrix with 1,000 rows the following code
is required:

INTEGER INFO (20)
CALL DBCREA ('KGG', 'MAT')
CALL DBOPEN ('KGG', INFO,'R/W', 'FLUSH', ISTAT)
CALL MXINIT ('KGG', 1000, 'RSP', 'SYM')

Whenever a matrix is flushed, with either a DBOPEN or a DBFLSH call, the initialization data are
cleared. Therefore, an WNXIIT call is required before reusing the matrix in this case. Similarly, if a
matrix entity is going to be redefined, it must be flushed before a new MXINIT call may be made.

339

8.4.2. Packing and Unpacking a Matrix by Columns.

The simplest method to process a matrix is with the full column routines WMAK and MXUNP. Each
of these routines may process either a full column or a portion of a column. In either case, only one call is
allowed for each column. The subsequent call will process the next column. The following code illustrates
the packing and unpacking of matrix by columns:

C
C PACK MATRIX BY COLUMNS
C

DO 100 ICOL = 1, NCOL
CALL MXPAK ('KGG', COLDTA (1,ICOL),1,1000)

100 CONTINUE
C
C UNPACK MATRIX BY COLUMNS
C

CALL MXPOS ('KGG' ,)
DO 200 ICOL = 1, NCOL

CALL MXUNr ('KGG', DATA,1,1000)
200 CONTINUE

8.4.3. Obtaining Matrix Column Statistics.

The IxPAX routine removes any zero terms in the column to reduce the amount of disk space
required to store the matrix. Consecutive nonzero terms are stored in strings. Whenever a zero term is
encountered, the current string is terminated and a new string is started. The MsTAT routine may be
used to obtain statistics about each column. The following code gives an example of how this information
can be used to unpack only those terms between the first and last nonzero terms.

DO 100 ICL = 1, NCOL
CALL MXSTAT ('KGG', COLID, FN'Z, LNZ, NZT, DEN, NSTR)
CALL MXUNP ('KGG', DATA, FNZ, LNZ-FNZ + 1)

100 CONTINUE

4
340

@ 8.4.4. Packing and Unpacking a Matrix by Terms.

A matrix can also be processed by individual terms. T_ sack a matrix termwise requires a series
of calls for each column. The first call must be a column initialization call, followed by a series of calls to
pack single terms and, finally, a column termination call. The following code shows the packing of an
individual matrix column by terms:

C
C INITIALIZE TERM-WISE PACKING
C

CALL MXPKTI ('KGG', IKGG)
C
C READ MATRIX TERM AND PACK
C
100 READ (5, *, END=200) IROW, VAL

CALL MXPKT (IKGG, VAL, IROW)
GO TO 100

C
C TERMINATE COLUMN
C
200 CALL MXPKTF ('KGG')

Note that the termwise packing must be done in ascending row order.

A similar set of calls is required to unpack a matrix by terms. The MXSTAT routine is used to
determine the number of nonzero terms that exist in the column. The following code will unpack and
print the nonzero terms for a matrix column

C DETERMINE NUMBER OF TERMS
C
C

CALL MXSTAT ('KGG', COLID, FNZ, LNZ, NZT, DEN, NSTR)
C
C START UNPACKING THE MATRIX COLUMN
C

CALL MXUPTI ('KGG', IKGG)
DO 100 ITERM=1, NZT

CALL MXUPT (IKGG, VAL, IROW)
WRITE (6,*) 'ROW=', IROW, 'TERM=',VAL

100 CONTINUE
C
C
C

CALL MXUPTF ('KGG')

It is not required that each term in the column be unpacked. If any terms are left, the MXUPTF routine
will ignore them and position the matrix to the next column.

341

8.4.5. Packing and Unpacking a Matrix by Strings.

As explained earlier, matrix data are actually stored in strings of terms with intervening zero
terms compressed. A series of routines is provided to allow matrices to be accessed by strings. The use of
these routines is similar to the termwise routines in that there is a column initialization call, a call for
each string, and a column termination call. The following code shows the packing of a matrix which
contains two strings, the first with five terms and the second with three terms.

C
C INITIALIZE FOR STRING PACKING
C

CALL MXPKTI ('KGG', IKGG)
C
C PACK OUT TWO STRINGS
C

CALL MXPKTM (IKGG, STRI, 10, 5)
CALL MXPKTM (IKGG, STR2, 20, 3)

C
C TERMINATE STRING PACKING
C

CALL MXPKTF ('KGG')

Packing a column by strings differs in several respects from packing by columns. First, more than
one NXPKTm4 call is allowed for each column. With cPiAK only one call per column is allowed. Secondly, no
compression of zero terms is done within a string. This feature can be used to insure that certain terms of
a matrix are stored, even if zero, so they can later be rewritten randomly.

The unpacking of a matrix by strings is shown in the following code example. Note the use of the

=STAT routine to determine the number of strings stored in the column.

C

C DETERMINE THE NUMBER OF STRINGS
C

CALL MXSTAT ('KGG', COLID, FNZ, LNZ, NZT, DEN, NSTR)
C
C UNPACK COLUMN BY STRINGS
C

CALL MXPKTI ('KGG', IKGG)

DO 100 I=1, NSTR
CALL MXUPTM ('KGG', VALS, IROW, NROW)
WRITE (6,*) 'TERMS FROM ROW', IROW, 'TO ROW',

* IROW+NROW-1, 'ARE', (VALS (I), I=1,NROW)
100 CONTINUE
C
C TERMINATE COLUMN UNPACKING
C

CALL MXUPTF ('KGG')

It is important that MXSTAT be used to determine the number of strings in a column because,
under several conditions, the number may be different from the number of strings packed. First, if the

342

string packed does not fit in the current buffer, it will be automatically split over two buffers. Secondly, if

t -o strings are packed consecutively, they will be automatically merged into one string in the buffer.

8.4.6. Matrix Positioning.

Several routines are provided to position a matrix randomly to a given column. This operation can
be done on either indexed, n•T, or unindexed matrices, but the presence of an index speeds up the
processing greatly. The following code shows the use of these routines to randomly read three matrix
columns.

C
C POSITION TO COLUMN 10 AND UNPACK
C

CALL MXPOS ('KGG', 10)
CALL MXUNP ('KGG', DATA, 1, 1000)

C
C POSITION FORWARD 5 COLUMNS
C

CALL MXRPOS ('KGG', +5)
CALL MXUNP ('KGG', DATA , 1, 1000)

C
C POSITION TO NEXT NONNULL COLU14N
C

CALL MXNPOS ('KGG', ICOL)
CALL MXUNP ('KGG', DATA, 1, 1000)

The first cuxNP retrieves the data for column 10 and leaves the matrix positioned at the start of
column 11. The wcxpos call positions the matrix forward five columns to column 16. The second mXN
call then retrieves the data for column 16. The results of the MXNMoS call depend on the data stored in the
matrix. If column 17 has nonzero terms, it will be positioned there. If column 17 is null, the matrix will be
positioned there. If column 17 is null, the matrix will be positioned forward until a nonnull column is
found. Note that both HxPOs and umpos require that the column to which the matrix is positioned
exists- The bmpos, utility is the more general in that it determines the next column that exists. Null
matrix columns car, be packed in two ways. The following code gives examples which are quite different
in that the first example creates a column with no nonzero terms while the second example creates a null
column which does not exist.

C
C CREATE A COLUMN OF ZEROS WITH MXPAK
C

CALL MXPAK ('KGG', 0.0,1,1)
C
C CREATE NULL COLUMN
C

CALL MXPKTI ('KGG', IKGG)
CALL MXPKTF ('KGG')

0
343

8.4.7. Missing Matrix Columns.

For extremely sparse matrices it is possible to pack only the columns which contain data. This
feature can greatly reduce disk space requirements for these matrices because space is not wasted for

column headers and trailers. It also simplifies coding because it is not required to pack null columns The
following example shows the packing of an extremely sparse matrix which contains only two items,

C
C PACK DIAGONAL TERM IN COLUMN 100
C

CALL MXPOS ('KGG', 1001
CALL MXPAK ('KGG', 1.0,100,I)

C
C PACK DIAGONAL TERM IN COLUMN 500
C

CALL MXPOS ('KGG', 500)
CALL MXPAK ('KGG', 1.0,100,1)

When a matrix does not have all its columns stored, care must be used when unpacking it. Since
the routines only operate on columns physically stored in the matrix only two sets of calls are required to
unpack the matrix.

The following code example shows one method of unpacking this matrix.

C

C UNPACK TWO MATRIX COLUMNS
C

DO 100 ICOL = 1,2
CALL MXSTAT ('KGG', COLID, FNZ,LNZ,NZT,DENNSTR)
WRITE (6,*) 'DATA FOR COLUMN', COLID
CALL MXUNP ('KGG' , DATA, 1, 1000)

100 CONTINUE

This example illustrates a disadvantage. The code must know the exact number of columns stored
in the matrix. There is no method provided to determine this. The next example shows how IwmmPOS can
be used to produce a code sequence that will work no matter how many physical columns are stored in the
matrix.

C
C POSITION TO NEXT COLUMN
C
100 CALL MXNPOS ('KGG',ICOL)

IF (ICOL.GT.0) THEN
WRITE (6,*) 'DATA FOR COL', ICOL
CALL MXUNP ('KGG', DATA,1,1000)
GO TO 100

ENDIF

The mXPos and mx1ios utilities should be used with extreme caution if the matrix does nGt
contain all physicai columns. These routines work on actual column numbers and will cause fatal errors if
the column does not exist. For example, an MXPos to column 200 will cause an elror because the coium 4

344

O is not stored in the matrix. If the matrix is positioned at column 100, an =RmPos of +100 will also fail

because column 200 is not stored in the matrix.

8.4.8. Repacking a Matrix.

Once a matrix has been packed, it is possible to rewrite certain columns of the matrix without

disturbing the data stored in any other columns. The only restriction is that the topology of the matrix

terms cannot change. For example, ifbAxl was used to pack the column, all zero terms are compressed.

Since these terms are not physically stored in the matrix, they cannot at a later time be replaced by a

nonzero term. this can be avoided by using the termwise or stringwise calls, which perform no zero

compression. The following example shows the packing of a matrix column and the subsequent repacking

of it.

C
C PACK COLUMN 1 OF MATRIX
C

CALL MXPOS ('KGG',1)
CALL MXPKTI ('KGG', IKGG)
CALL MXPKTM (IKGG, STR, 10,10)
CALL MXPKTF ('KGG')

C
C READ COLUMN 1 OF MATRIX
C

CALL MXPOS ('KGG',1)
CALL MXPKTI ('KGG' , IKGG)
CALL M-PKTM (IKC-G, DATA,IROW,NROW)
CALL MXPKTF ('KGG')

C

C DOUBLE EACH NUMBER IN THE STRING
C

DO 100 I=1, NROW
DATA (I)=DATA (I) * 2.0

100 CONTINUE
C
C REPLACE THE STRING
C

CALL MXPOS ('KGG',I)
CALL MXPKTI ('KGG', IKGG)
CALL MXPKTM (IKGG, DATA,IROW,NROW)
CALL MXPKTF ('KGG')

All the matrix pack utility calls, i.e., column, term and string, may be used to repack matrix
columns.

345

Database Matrix Utility Module: MX1ORM

Entry Point: MXFORM

Purpose:

7b change the form of a matrix entity.

MAPOL Cnilling Sequence:

Nore

Application Calling Sequience:

CALL NXFORM (N&M, FORK)

NAME The matrix name (Character, Input)

womd The new matrix form (Character, Input)

I REW' Rectangular

I SYM' Symmetric

' DfIAG Diagonal

,INDENT' Identity

SQUAP.E' Square

Method:

None

Design Requirements:

1. MM 4 may be called any time after the creation of the matrix.

Error Conditions:

1. Illegal FORm value; error HxFOmO 1.

`46

* Database Matrix Utility Module: MXINIT

Entry Point: MXINIT

Purose:

Tb initialize a matrix prior to writing data.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MXINIT (MATNM, NROW, PREC, FORM)

MARTM Name of matrix (Character, Input)

NROW Number of rows (Integer, Input)

P.EC The precision of the matrix (Character, Input)

IRsP, Real, Single-precision

,RDP' Real, Double-precision

'CSP' Complex, Single-precision

'CDP' Complex, Double-precision

FOX4 Form of the matrix (Character, Input)

' REC' Rectangular

'Sym' Symmetric

'DIAG' Diagonal
'IIDENT' Identity

'SQUARE' Square

Method:

None

Design Requirements:

None

Error Conditions:

None

347

Database Matrix Utility Module: MXWPOS

Entry Point: MXNPOS

Purpose:

lb position a matrix to the next nonnull column.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL WNXPOS (MhTNAT, 2COL)

MATNAM Neme of matrix (Character, Input)

ICOL Column number positioned to (Integer, Output)

Method:

None

Design Requirements:

1. If there are no more nonnull columns in the matrix, ICOL is set to zero

Error Conditions:

None

348

Database Matrix Utility Module: MXPAK

Entry Point: MXPAK

Purpose:

To pack all, or a portion, of a matrix and then to move to the next column.

MAPOL CEL1ing Seouence:

None

Application Calling Sequence:

CALL MXNPOS (MATAM, ARAY, ROW1, NROW)

MAT•AM Name of metrix to be packed (Character, Input)

ARMX Array containing data to be packed (Any type, Input)

ROwM First row position in column (Integer, Input)

NROW Number of rows to pack (Integer, Input)

Method:

None

Design Requirements:

* None

Error Conditions:

None

349

Database Matrix Utility Module: MXPKT

Entry Point: MXPKT

Purose:

To pack a column of a matrix one term at a time.

MAPOL Calling Sequence:

None

&Rli3ation.Calling Sequence:

CALL kOWT (VNITID, VAL, IROW N

VVITIV Unit identification from MXXiTI call (Integer, Input)

VXL The value to be packed (Any type, Input)

TACoK The row position of the term. mRow must be positive and greater than the
value in any previous WMPIT call for the current column (Integer, Input)

Method:

Nono

Design Requirements:

None

Error Conditions:

None

350

Database Matrix Utility Module: MXPKTF

Entry Point: MXPKTF

Purpose:

To terminate the termwise or partial packing of a matrix column.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MXPKTF (MATNAM)

MATNAH Name of the matrix being packed .(Character, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

351

Database Matrix Utility Module: MXPKTI -

Entry Point: MXPKTI

Purpose:

'lb initialize a matrix column for term-by-term or partial packing.

MIAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MXPKTI (MATNAM, UNITID)

MATNM Name of the matrix to be packed (Character, Input)

UNITID Unit identifier (Integer, Output)

Method:

None

Design Requirements:

1. A matrix may be packed by columns using iaPAK, by terms, or by partial columns, but not by any
combination.

Error Conditions:

None

3
352

. Database Matrix Utility Module: MXPKTM

Entry Point: MXPKTM

Purp-ose:

'Tb pack a column of a matrix using psrtial columns.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MXPKTM (UNITID, VALARR, ROW1, NROW

UNITID Unit identifier from MXPKTI call (Integer, Input)

VALARR Array of values to be packed (Any type, Input)

ROW1 Initial row position of VALARR (Integer, Input)

NROW Number of rows to be packed (Integer, Input)

Method:

None

Design Requirements:

1. ROW1 and NROW must be positive.

Error Conditions:

None

I

353

Database Matrix Utility Module: MXPOS 6
Entry Point: MXPOS

Purpose:

To position a matrix to a specified column.

MAPOL Calling Sequence:

None

Application Calling Sequence:

C lZL WOS (MAT• M, COL)

LANAM Name of the matrix (Character, Input)

COL Column number (Input, Integer)

Method:

None

Design Requirements:

None

Error Conditions:

None

I5

O Database Matrix Utility Module: mXRPOS

Entry Point: MXRPOS

Purpose:

To position a matrix to a column by specifying the column increment relative to the current column.

MAPOL Callinjg Sequence:

None

Application Calling Sequence:

CALL MXPOS (MATNAM, DELCOL)

MATFNA Name of the matrix (Character, Input)

DELCOL Column number increment (Integer, Input)

Method:

None

Design Requirements:

1. Positive DELCOL positions forward, negative position backward from current column.

Error Conditions:

Norne

355

Database Matrix Utility Module: MXSTAT

Entr Point: MXSTAT

Purpose:

7b obtain status information for the current column.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MXSTAT (MATNWM, COLID, FNZ, LNZ, NZT, DEN, NSTR

MATHAM Name of the matrix (Character, Input)

COLID Current column number (Integer, Output)

FNZ First nonzero row in column(Integer, Output)

LIUZ Last nonzero row in column (Integer, Output)

N•T Number of nonzero rows in column (Integer, Output)

DEN Column density (Real, Output) (DEN is a decimal fraction, e.g., 40%=.40)

NSTR Number of strings in column (Integer, Output)

Method:

None

Design Requirements:

1. Note that for very large matrices, DEN is a single-precision number and may be numerically zero
even if there are nonzero terms in the matrix.

Error Conditions:

None

356

Database Matrix Utility Module: MXUNP

Entry Point: MXUNP

Purpose:

lb unpack all, or a portion, of a matrix column and then to move to the next column.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL MXUNP (MATNAM, ARRAY, R.WI. NMOW)

MAXTM Name of the matrix (Character, Input)

ARRAY An ay containing data to be unpacked (Any type, Output)

RowI First row position in column (Integer, Input)

NROW Number of rows to unpack (Integer, Input)

Method:

None

Deft Requirements:

Nor.e

Error Coudltions:

None

357

Database Matrix Utility Module: HXUPT

Entry Point: MXUPT

Purose:

'lb unpack a column of a matrix one term at a time.

MAPOL Calling Sequence:

None
A4plication Calling Sequence:

CALL MXUPT (UNITID, VAL, IROW)

UNITID Unit identification from XxMTI call (Integer, Input)

VAL The value of the term (Any type, Output)

IROw The row position of the term (Integer, Output)

Method:

None

Design Requirements:

None

Error Conditions:

None

8

358

, Database Matrix Utility Module: MXUPTF

Entry Point: MXUPTF

Purpose:

To terminate the termwise or partial unpacking of a matrix column.

MAPOL Calling Sequence:

None

Application Callin- Sequence:

CALL MPTF (?•'TNKM)

MATNA Name of the matrix being unpacked (Character, Input.)

Method:

None

Design Requirements:

None

Error Conditions:

None

359

Database Matrix Utility Module: MXUPTI

Entry Point- MXUPTI

Purpose:

To initialize a matrix rlumn for term-by-term or partial unpacking.

MAPOL Calling Sequence:

None

A&plication Calling Sequence:

CALL MXUPTI (MATNHM, UNITID

1ATHM Name of the matrix (Character, Input)

UNITID Unit identifier (Integer, Output)

Method:

None

Design Requirements:

1. A matrix may be unpacked by columns using lXuP, by term, or by partial columns, using faamT
and M but not by any combination.

Error Conditions:

None

360

Database Matrix Utility Module: MXUPT.4

Entry Point: MXCUPTM

Pu~rpose:

To unpack partial columns of a matrix.

MAPOL Calling Sequence:

None

SiicationCallin Se ,gence:

CALL MMTW• (UNITID, VAILARR, ROWI, NROW

USITID Unit identifier from MMUPTI call (Integer, Input)

VAA•AR Array that will contain the unpacked row- (Any type, Output)

ROWI Initial row position being unpacked (Integer, Output)

mNow Namber of rows being unpacked (Integer, Output)

Method:

None

Desin Requirements:

None

Error Conditions:

None

361

8.5. UTILITIES FOR RELATIONAL ENTITIES

Relational database entities are used to save highly structured data that will be accessed and
modified in a random manner. Utilities to operate on relations are summarized below:

SUBROUTINE FUNCTION

RESCHM Defines the schema of a relation

REPROJ Defines the projection of the relation prior to 1/0 activity

RE•QURY Queries the schema of a relation

BEGET Gets, or fetches , a qualified entry from a relation
REGETM

_EUPD Updates the current entry of a relation
REUPDH

READD Adds a new entry to a relation
READDH

REPOS Positions a relation to an entry

RECPos Checks for existence of a given entry

RECONID

RESETC Defines constraints or W tRE. conditions for the relation
REJM•C

-EIM
RJMULI Checks if an attribute has a NULL value
RENULR

BERS

RECLRC Clears conditions defined for a relation

REGB Gets, or fetches, all of the qualified entries from a relation

REGBM

RPMB Adds a group of entries to a relation

REABM

RESORT Sorts the entries of a relation

8.5.1. Examples of Relational Entity Utilities.

This subsection pre-vides specific Examples of operating with relations. Particular attention should
be given the use of double-precision data attributes. Special routines are provided for such attributes
when used by themselves or when "mixed" with other data types.

4
362

@ 8.5.2. Creating a Relation.

A relational entity has both a name and a schema. The schema defines the attributes of a relation
and their data types. Therefore, a call to the REscm routine is required in addition to a DBCREA call in
order to complete the creation of a relational entity. For example, to create relation GRID (shown in the
introduction to Section 8), the following code is required:

C
C DEFINE ATTRIBUTES TYPES, AND LENGTHS
C

CHARACTER *8 GATTR (4)
CHARACTER *8 GTYPE (4)
INTEGER GLEN (4)
DATA GATTR I 'GID', 'X', 'Y', 'Z'/
DATA GTYPE / 'KINT', 'RSP', 'RSP','RSP' I
DATA GLEN / 0,0,0,0 /

C
C CREATE A RELATION AND SCHEMA
C

CALL DBCREA ('GRID' , 'REL')
CALL RESCHM ('GRID', 4, GATTR, GTYPE, GLEN

The schema is specified by attribute name and data type. Various data types are available. In the
example, the grid ID, GID, is called a keyed integer (KInT). This causes an index structure to be created@that will allow fast direct access to a given entry. The coordinate values x, Y, and z are defined as real,
single-precision (RsP). The length parameters (GLEN) are only used for character attributes and for arrays
of integers or real numbers. An array of values would be used if the overall data organization is relational
but some groups of values are only used on an all-or-nothing basis.

8.5.3. Loading Relational Data.

Once a relation has been created it may be loaded with data. There are two modes of adding data:
one entry at a time, or a "blast" add wherein the entire relation, or a large part of it, has been accumu-
lated in memory. For each mode, there are two options, one when none of the attributes are real,
double-precision, and a second if one or more attributes are real, double-precision. Using the relation
GRID, the example below indicates how it could be loaded on an entry-by-entry basis.

0
363

cc ALLOCATE BUFFER AREA FOR ENTRIES AND INFO

C
INTEGER IBUF (4), INFO (20)

C
C USE EQUIVALENCES TO HANDLE REAL DATA
C

EQUIVALENCE (IGID, IBUF (1)), (X, IBUF (2)
EQUIVALENCE (y, IBUF (3)), (Z, IBUF (4)

C
C DEFINE THE PROJFCYION AS THE FULL RELATION
C

CHAR71r!TFr *8 PATTR (4)
DATA PI.TTR / 'GID', 'X', 'Y', 'Z'/

C
C OPEN THE ENTITY FOR I/O
C

CALL DBOPEN ('GRID', INFO, 'R/W', 'FLUSH', ISTAT)
CALL REPROJ ('GRID', 4, PATTR)

C
C READ AN ENTRY FROM INPUT, ADD TO RELATION
C

DO 100 I=1, IEND
READ (5, 101) IGID, X,Y,Z
CALL READD ('GRID', IBUF)

100 CONTINUE
C
C
C

CALL DBCLOS ('GRID')

Space must first be allocated to contain an entire entry of the relation. This buffer must be of a
specific type so that equivalences must be used if the attributes are of mixed data types. The projection of
the relation must be defined (via ImPxioJ) even if all attributes are being selected. If the data had been
stored in memory first, the PSADDB routine could have been used to "blast' all of the entries into the
relation with a single call.

364

. 8.6. Accessing a Relation.

A relation is accessed by a set of four routines: RIGET, REGE'TH, REGB, and REM, Several other
routines now come into play. The first are REPOS and REcPos. These routines are used to find an entry
within a relation whose key is equal to a specific value. The second is the group of routines RECOND,
RESETC, REENDC, and izCLPC. These allow the specification of more complex "where" clauses that are
used to qualify an entry of the relation.

As an example, suppose that the X, Y, and Z coordinates are to be retrieved for a grid point whose
GID is 1. The code segment below could be used to perform this:

C
C ALLOCATE BUFFER - ALL OUTPUT IS REAL
C

DIMENSION COORDS (3), INFO (20)
C
C DEFINE THE PROJECTION
C

CHARACTER *8 PATTR (3)
DATA PATTR / 'X', 'Y', 'Z'/

C
C OPEN THE ENTITY FOR I/O
C

CALL DBOPEN ('GRID', INFO, 'R/W', 'NOFLUSH', ISTAT)
CALL REPROJ ('GRID', 3, PATTR)

C

C POSITION TO THE DESIRED ENTRY
C

CALL REPOS ('GRID', 'GID', 1)
C
C GET THE ENTRY
C

CALL REGET ('GRID', COORDS, ISTAT)

Note that GID must be a keyed attribute to use REPOS.

To qualify an entry by more than one attribute, a sequence of an RECOND call, any number of
RESETC calls, and an REmMC call can be used. For instance, to find any or all grid points whose
coordinates are X=I, Y=2? Z=3, the code segment below could be used:

CALL RECOND ('GRID', 'X', 'EQ', 1.0)
CALL RESETC ('AND', 'Y', 'EQ', 2.0)
CALL RESETC ('AND', 'Z', 'EQ', 3.0)
CALL REENDC
CALL REGET ('GRID', BUF, ISTAT)

Each call to REGET will retrieve an entry that satisfies the specified conditions. An ISTAT value
greater than zero indicates the end of successful retrievals. Conditions may include any of the relational
operators, the MAX and baN selectors and the Boolean operators AND and OR. If one of either Mrl or MAX

365

issued, however, it is the only condition allowed. To reset a new set of conditions on an open relational

entity, the utility RECLRC may be called to destroy the current conditions.

8.6.1. Updating a kelational entry.

One of the most powerful features of the relational database is the ability to randomly modify a
small number of data items efficiently. To do this, the utilities REJUOM and RZUDPM are used. The update
prr .edure is a simple one. First, the projection is set. This is followed by positioning to a row or rows by
specifying a RPos, aEcPos or an RECOND. Routine REZGET is then used to fetch the entry. One or more of
attributes may then be modified in the buffer and an RWUP used to accomplish the update. Note that
attributes not in the projection, and attributes not modified in the buffer, will remain unchanged.

8.6.2. Other Operations.

If it is necessary for an application to determine the schema of a given relation, this may be done
with the utility REQURY. This routine returns the names and types of each attribute in the schema.
Finally, a relation may be sorted in an ascending or descending manner on one or more of its attributes
by using the utility RESORT.

3

366

Database Relational Utility Module: REAB

Entry Point: REAB

Purpose:

To add multiple entries, held in memory, to a specified relation.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CAML RrB (RELNA. BUF, INUJM)

IENA.M Name of the relation (Character, Input)

BUT Array that contains the entries to be added to the relation (Any, Input)

INMl The number of entries to be added (Integer, Input)

Method:

None

Design Requirements:

1. Only integer, real single-precision, or string attributes may be added with this routine.. Error Conditions:

None

367

Ass ciaio // 1 0le
AIIM

Ascainfor Information and Image Management <ýe
\%\\ý Or1100 Wayne Avenue, Suite 1100

Silver Spring, Maryland 20910 /(\b301/587-8202 4Nx"

N1160

Centimeter
1 2 3 4 5 6 7 8 9 10 11 1213 14 15mm

1 23 4 5
Inches 1.0 19 13Ž Z

1.8

[.25 _. H1-

~Akk

MANUFACTURED TO AIIM STANDARDS 4b~
BY APPLIED IMAGE, INC.«>

Database Relational Utility Module: REAm

Entry Point: REABM

Purpose:

To add multiple entries, held in memory, to a specified relation where the relational attributes are
double-precision, or mixed precision, types.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL FEAU (RELNL 4, SIGL, DBEL, EIlU1)

Rzium Name of the relation (Chiaracter, Input)

SNGL Array that contains the single-precision (Integer, Real, Single-Precision,
or String) attributes to be added (Any, Input)

DBLI Array that contains the double-precision attributes to be added
(Double, Input)

INM The number of entries to be added (Integer, Input)

Method:

None

Design Reguirements:

None

Error Conditions:

None

368

. Database Relational Utility Module: READD

Entr#y Point: READD

Purpose:

Tb add a new entry to a relation.

MAPOL Calling Sequence:

None

Application CallinlSequence:

CALL RADD (REZ WA, BUF)

RELNME Name of the relation (Character, Input)

BUT Array that contains the entries to be added to the relation (Any, Input)

Method:

None

Design Requirements:

1. Only integer, single-precision, or string attributes may be added Mwith this routine.

Error Conditions:

* None

369

Database Relational Utility Module: READDM I
Entry Point: READDM

Purpose:.

7b add a new entry to a relation that contains double-precision, or mixed precision, attributes.

MAPOL Calling Sequence:

None

ARplication Calling Sequence:

CALL ZAD (F.ELWIX)A, SWGL, DBLE)

RE12m Name of the relation (Character, Input)

S•GL Array that contains the single-precision entry data (Any, Input)

DBLE Array that contains the double-precision entry data (Double, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None 4

370

Database Relational Utility Module: RECLRC

Entry Point: RECLRC

Purpose:

'b clear the conditions set on a relational entity without performing a DBCLOS.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL RECLRC (ITNM

I2INMAM The name of the relational entity (Character, Input)

Method:

None

Design ReQuirements:

None

Error Conditions:

None

371

Database Relational Utility Module: RECOND

Entry Point: RECOND
Pmllose:

Tb define a condition, or constraint, for a relational attribute prior to performing a get operation (see

also VXSETC).

MAPOL Calling Sequence:

None

Application Calling Sequence:
CAML a3COND (BELVAH, ATTRWM, RELOP, ViAL)

Rzu•p Name of the relation (Character, Input)

ATTRNM• Name of the attribute (Character, Input)

RZlWP The relational operator for the constraint; one of' EQ', 'I ME', IGT', 'LT',
'GE', ',,, '.•I IX', 'I 'b' (Character, Input)

VAL The value to be tested (Any, Input)

Method:

None

Design Requirements:

I. vAL must be the same type as the ATTW . All RELOPs are legal for attributes of type 'I=T',
' rl r', IRsP,, and 'RIP,. Only 'ZQ' and 'NEI, are valid for attribute types 'STR' and I'KS'.
Attribute types of 'I ATz,,, 'AsP', and I nRDP' may not be used in a condition. Also, for attributes
of type I STR' or I 'STR, their length must be 8 or fewer characters. Note that string attribute
values are passed as hollerith data.

2. Any Rzco=o call removes any existing conditions, that is, it performes an PECLRC internally.

Error Conditions:

None

3
372

O Database Relational Utility Module: RECPOS

Entry Point: RECPOS

To position to a specific entry and return the row number, if present.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL RECPOS (PELNHM, M!Y, VAL, OWM)

RELUM Name of the relation (Charac'ter, Input)

XEY Name of a keyed attribute (Character, Input)

VAL The desired value of the keyed attribute (Integer, Input)

ROINM The row number satisfydvg fhe omdition. if zero, no entries were foxid
(Integer, Output)

Method:

None

Design Requirements:

1. If the XEY is a charactpr at•tribute, it must b• -I length eight and VAL must contain the hollerith
representation of the desired value. The cernvezh it ' *orn character to hollerith must be made with
the DEVMDIS routine.

Error Conditions:

None

373

Database Relati3nal Utility Module: REENDC

Entry Point: REENDC

Purpose:

To end the definition for a relational entity.

MAPOL Calhnig Seagenpe:

None

Application Calling Sequence:

CwTA -REEM~C

Method:

None

Dulgi Riruments:

None

Error Conditions:

None

374

374

. Database Relational Utility Module: RELM

Entry Point: REGB

Purpose:
'Tb fetch all of the entries of the requested relation that satisfy the specified projection and constraints
(see also PzGm).

MAPOL Calling Sequence:

None
Aplication Callin~Acune

CAIL REGS (REM"N , BUF, I1m, ISTAT

RE, WAX Name of the relation (Character, Input)

BuF Array that will contain the entries (Any, Output)

INW The number of entries fetched (Integer, Output)
ISTA•T Status return (Integer, Output)

0 entries successfully fetched
201 no entries found

Method:

None

Design Requirements:

1. Only integer or real, single-precision or string attributes may be fetched with this routine.

Error Conditions:

None

375

Database Relational Utility Module: REGBM

En= .Point: REGBM

Pwpose:
1b fetch all of the entries of the requested relation that satisfy the specified projection and constraints
and that contain double-precision, or mixed precision attributes.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CAML RZMM %' RELH&M, SUGL, -)BLE, INUIM, ISTX?

RELUM Name of the relation (Character, Input)

SNGL Array that will contain single-precision entry data (Integer, Real Single-
precision, or String, Output)

DBLE Array that will contain double-precision entry data (Double, Output)

INM The number of entries fetched (Integer, Output)

ISTAT Status return (Integer, Output)
0 entries successfully fetched
201 no entries found

Method:

None

Design Requirements:

None

Error Conditions:

None

3
I 376

Database Relational Utility Module: REGET

Entry Point: REGET

Purpose:

Tb fetch an entry of a relation that satisfies the given projection and constraint conditions.
MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL REGET (RELNAM, BDF, ISTAT)

REIMM• Name of the relation (Character, Input)
BUF Array that will contain the entry data (Any, Output)

ISThAT Status return (Integer, Output)
0 entries successfully fetched
201 no entries found

Method:

None

Design Requirements:

* None

Error Conditions:

None

377

Database Relational Utility Module: REGETm

Entry Point: REGETM

Ppose:

7b fetch an entry of a relation that satisfies the given projection and constraint conditions, and that
contains double-precision, or mixed precision attributes.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CAM REGETH (RELNMM, SNGL, DBLE. ISTAT)

RELIM Name of the relation (Character, Input)

SNGL Array that will contain single-precision entry data (Integer, Real Single-
precision, or String) (Any, Output)

DBLE Array that will contain double-precision entry data (Double, Output)

ISTAT Status return (Integer, Output)
0 entries successfully fetched
201 no entries found

Method:

None

Desin Reluicrements:

None

Error Conditions:

None

37

378

SDatabase Relational Utility Module: RENULx

Entry Points: RENULD, RENULI, RENULR, RENULS

PRpose:

To check if a double-precision, integer, real, or character attribute has a null value. Attributes excluded
from the projection when a relational entry is added are given such null values.

MAPOL Calling Sequence:

None

Application Calling Sequences:

RENULD (FIELDD
RENULI (FIELDI)
RENULR (FIELDR)
RENULS (FIELDS)

FZELDD Double precision attribute value (Input)

FIELDI Integer attribute value (Input)

!'IELDR Real, single-precision attribute value (Input)

FIELDS String attribute value (Input)

RENULD Logical values (output) TRUE if FIELDx is null
RE1NULI0 RENULR
RENULS

Method:

None

Design Requirements:

1. The string attribute, FIELDS, must be passed as a hollerith.

Error Conditions:

None

0
~379

Database Relational Utility Module: REPoS

Entry Point: REPOS

Purpose:

Tb position a relation to an entry with a given keyed attribute.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CAML EPOS (RELWN, KEY, VAL)

PSLYM Name of the relation (Character, Input)

KEY Name of a keyed attribute (Character, Input). The special attribute name
of IENTRMY•, with a VAL•1 may be used to reposition an entity to the
beginning.

VAL The desired value of the keyed attribute (Integer, Input)

Method:

None

Design Requirements:

1. The attribute must be keyed.

2. If x•fir, ENToanm then VAL must be 1.

Error Conditions:

1. A database fatal error occurs if the requested entry does not exist.

380

Database Relational Utility Module: REPROJ

Entry Point: REPROJ

Purpose:

To define the projection, or subset of attributes, for the relation prior to performing updates, adds or
gets of entries.

MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL REPROJ (EELAI, NATTR, ATTRLIST)

REINM Name of the relation (Character, Input)

NATTR Number of attributes in the projection (Integer, Input)
ATTRLIST Array containing the attribute names that define the projection

(Character, Input)
Method:

None

Design Requirements:

* None

Error Conditions:

None

381

Database Relational Utility Module: REQURY

Entry Point: REQURY

Purpose:

lb retrieve the schema of a relation.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL REQURY F ZINAM, NATTR, ATTRLIST, ATTRTYPE, ATTRLEN, TOTLWN)

RELM Name of the relation (Character, Input)

NATMR Number of attributes (Integer, Output)

ATTRLIST Array containing the attribute names (Character, Output)

ATTRTYPE Array containing the attribute types (Character, Output)

I NT' Integer attribute

'KIlT' Keyed integer attribute

'AINT' Array of integers

,RSP' Real, single-precision attribute

,ARSP' Array of single-precision

,P.DP' Real, double-precision attributes

''A P' Array Jf double-precision

'STR' String attribute

, KsTR, Keyed string attribute

ATTRLW Array defining the number of elements in an array attribute or the num-
ber of characters in a string attribute (Integer, Output)

TOTI Total length of schema in words (Integer, Output)

Method:

None

Dosiýn Requirements:

None

Error Conditions:

None

4
382

S Database Relational Utility Module: RESCHM

Entry Point: RESCHM

Purose:

To define the schema of a relation being created by a functional module.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL RESCHM (REL , NATTR, ATTI2UST, ATTRTYPE, ATTRLEN)

RELHM Name of the relation (Character, Input)

NATM Name of attributes (Integer, Input)

ATTELIST Array containing the attribute names (Character, Input)

ATMTYPE Array containing the attribute types (Character, Input)

'IN' Integer attribute

'KINT' Keyed integer attribute

'AINT, Array of integers

'ERSP' Real, single-precision attribute
'ARSP' Array of single-precision

",DP' Real, double-precision attributes
' APP' Array of double-precision

'STR' String attribute

,RSTR' Keyed string attribute

ATTPI.E Array defining the number of elements in an array attribute or the num-
ber of characters in a string attribute (Integer, Input)

Method:

None

Design Requirements:

1. The relation PELINA must not already have a schema defined.

2. Keyed attributes must have uniform -values for all rows.

3. No attributes may have the name 'IE MRnqU'

4. Attributes of the type 'KSTR' must have length of 8 or fewer characters.

Error Conditions:

None

383

Database Relational Utility Module: RESETC

EziryPoint: RESEWC

Paosey

"Tb define additional conditions, or constraints, for a relational attribute prior to performing a get

operation (see also RzcOND).

LAPOL Calling Sequence:

None

Application CalliaýStice.

CALL MESETC (BOOL, ATTEP.A1, RELOP, VAL

BOOL The boalean operation ' oR' or ' AmD' (Character, Input)

AT7RNM Name of the attribute (Character, Input)

RELOP The relational operator for the constraint; one of 'I =', I =', ' GT',
' LT',' GE',' LE', 'IAX', 'MN' (Character, Input)

VAL The value to be tested (Any, Input)

Method:

None

Desijmn Requirements: 4
1. VAL must be the same type as the ATTRNA Amaximum of 10 conditions may be specified. AI1RELOPs

are legal for attributes of type 'I WT, 'KINT', 'IRsP,, and ,IPP. Only 'I a' and ,INE are valid
for attribute types 'I S ' and ', sTR,. Attribute types of' AI', I AMP', and ' xP' may not be
used in a condition. Also, for attributes of type ' sa, or ' KSTR', their length must be 8 or fewer
characters. Only one condition may have aI MAXI or ' M3w' I REOP. Note that string attribute values
are passed as hollerith data.

Error Conditions:

None

38-1

Database Relational Utility Module: RESORT

Entry Point: RESORT

Purpose:

lb sort a relation on one or more of its attributes.

MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL RESORT (RELNM, NATTR, SORTTYPE, ATTRLIST, KORE)

RELNM Name of the relation (Character, Input)

HATTR The number of attributes to be sorted (Integer, Input)

SORTYPE The type of sort for each attribute (Character, Input)

'ASC' Ascending

'IDES' Descending

ATTRLIST Alist of the attributes to be sorted (Character, Input)

KORE Base address of open core (Input)

. Method:

None

Design Requirements:

1. The sort sequence is performed in the order that the attributes are specified in ATTELIST.

2. The relation R.LNAM must be closed when RESORT is called.

Error Conditions:

None

385

Database Relational Utility Module: REUPD

Entr Point: REUPI

Tb update the current relational entry.

MAPOL Calling Sequence:

None

Application Calling Sequence:
CALL REZD C REZLN, BUF)

REMM Name of the relation (Character, Input)

Bur Array that contains updated entry data (Any, Input.)

Method:

None

Design Requirements:

1. Only integer, single-precision or string attributes may be updated with this routine.

Error Conditions:

None

388

* Database Relational Utility Module: REKrPDM

Entry Point: REUPDM

Purpose:

To update the current relational entry that contains double-precision, or mixed precision, attributes.

MAPOL Calling Sequence:

None

Application Calling Seguence:
CALL REMPDM (RELMAM, SNGL, DBLE)

RELAX Name of the relation (Character, Input)

SNGL• Array that contains the single-precision entry data (Any, Input)
DMUM Array that contains the double-precision entry data (Double, input)

Method:

None

Design Raguirements:

None

u Error Coniditions:

None

387

8.7. UTILITIES FOR UNSTRUf JURED ENTITIES

Unstructured database entities are used pimariy for scratch I/O by modules or for saving data
that are generally used on an all-or-nothihg basis Thnt is, random access to anything other than a
complete record is not used. The utilities to support tnis ,ype of data are shown below:

SUBROUTINE iJ NCT1ON

tNPOS Positions to a given uatsticture.d -record

UNm.Pos __________

UNSTA.T Returns fhe length of a recordi

UNGET Gets, or fetches, an entire record

UNGETP Gets, or fetches, a partial record

DlPUT Adds a new record to the unstructured entity

UNPUTP Adds a partial record to the entity

8.7.1. Zenerating an Unstructured Entity

As seen in Subsection 8.2, the first step in genernting any entity is to parforn, a D~c,-, This is
followed by a DBOPE, any desired 1/O activity, and finally a tmCLOS. Suppose, for example, the local
coordinates X, Y, and Z of 1000 grid points have been computed and are in a block of dynamic memory
called GRxD whose location pointer is xGD (see Section 8.3). Further, assume that these coordinates have
also been converted to the basic coordinate system, and that these transformed coordinates are Iocated in
block Nm with pointer xim. These data will be used in a subsequent routine or module in their
entirety. It will therefore be written into an unstructured entity called COoRD in two distinct recoris. The
code segment to perform this is shown below:

c

C CREATE THE NEW FlITITY AND OPEN FOR I/O
C

CALL DBCREA ('COORD', 'IUN')
CALL DBOPEN ('COORD', INFO, 'R/W', 'FLUSH', ISTAT)

C
C WRITE THE TWO UNSTRUCTURED RECORDS
C

CALL UNPUT ('COORD', Z (IGRD), 3000)
CALL UNPUT ('COORD', Z (IGND), 3000)

C I/O COMPLETE CLOSE ENTITY

CALL DBCLOS (' COORD')

"The t•NPT call loads a complete record iito the entity. Therefore, the above operations generate
two records in coomD. If an operation is being performed "on-the-fly," or complete records do not fit in
memory, then a "partial" put, UNPUTP, may be performed.

38
i 388

Now assume that the local coordinateb are all in memory, but that the transferred coordinates
will be generated or. a point-.by-point basis and written to the COORD entity. Subroutine TPs"3S trans-
forms a set of three local coordinates to basic coordinates stored in a local array xtwW. This is illustrated
below:

C
C CREATE AND OPEN THE ENTITY
C

CALL DBCRFEA ('COORD', 'UN')
CALL DBOPEN ('COORD', INFO, 'R/W', 'FLUSH', ISTAT)

C
C FIRST WRITE THE LOCAL COORDINATE
C

CALL UNPUT ('COORD', Z (IGRD), 3000)
C
C NEXT, COMPUTE NEW COORDINATES ONE-AT-A-TIME
C

DO 100 T=0,2999,3
CALL TRANSF (Z (IGRD+I), XNEW)
CCAIL UNPUTP ('COORD', XNEW, 3)

100 CONTINUE
C

C TERMINATE PARTIAL RECORD AND CLOSE
C

Ab CALL UNPUT ('COORD', 0, 0)
CALL DBCLOS ('COORD')

Note that a record of an unstructured entity that is created by partial puts must be "closed" by a
call to ukamT. In this case, the final put cperati,.n does not extend the record but only terminates it.

8.7.2. Accessing an Unstructured Entity.

The UNPUT and UNPuTP utilities have direct analogs in tNGET and UNGETP for the retrieval of
data. Three other utilities are available for data access. The first two, uNPos and UN1MtoS, allow an
onstructured entity to be positioned to a specific record. Note that this access is much faster if the entity
was created -'xh an index structure, that is, the DBCREA call specified type ', ni'. The third utility,
UNSTAT, is useu to find length of a given record. These utilities are demonstrated in the example below.
the second record of cooRD will be accessed and each coordinate set used individually. It is not assumed
that the number of grid points is known to this application.

389

C6
C OPEN THE ENTIrY, READONLY MODE
C

CALL DBOPEN ('COORD', INFO, 'RO', 'NOFLUSH', ISTAT)
C
C NOFLUSH PROTECTS AGAINST DESTROYING THE DATA,
C NOW, POSITION TO RECORD 2, GET LENGTH OF RECOID
C

CALL UNPOS G (COORDR, 2)
CALL UNSTAT ('COORD', IREC, LEN)

C
C LEN IS THE NUMBER OF WORDS IN THE RECORD,
C FETCH AND USE COORDINATES ONE-AT-A-TIME

C
NGRi D=LEN/3

DO 100 I=N , NGRID
CALL UNGETP ('COORD', XNEW, 3)

C
C USE THE XNEW VALUES HERE
C
100 CONTINUE
C
C 1/0 COMPLETE, CLOSE THE ENTITY
C

CALL DBCLOS ('COORD')

8.7.3. Modifying an Unstructured Entity.

It is also possible to modify, or update, the contents of an individual record within an unstruc-
tured entity. The only limitation to this feature is that the length of the record must be the same as, or
less than, the length of the originally -eated record.

390

, Database Unstructured Utility Module: UNGET

Entry Point: UNGET

Purpose:

To fetch a complete record from an unstructured entity.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UNGET (NAME, ARAY, NMWORD

NAME Name of the unstructured entity (Character, Input)

APW Array that will contain the unstructured record (Integer, Output)

NWOMD The number of single-precision words to be transferred (Integer, Input)

Method:

IfNWORD is less than the total number of words, the remaining data will not be retrieved. UNGET positions
the entity to the next record after the retrieval.

Design Requirements:

None

Error Conditions:

None

t991

Database Unstructured Utility Module: UNGETP

Entry Point: UNGETP

purpose:

To fetch a portion of an unstructured record.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UNGETr (NMME, ARM, WORD)

u Name of the unstructured entity (Character, Input)

R Array that will contain the unstructured record (Integer, Output)

NWORD The number of single-precision words to be transferred (Integer, Input)

Method:

Following the retrieval, the entity is still positioned at the same record, a subsequent UNGET or UNGETP
will get the next words in the record.

Design Requirements:

None

Error Conditions:

None

3
392

Database Unstructured Utility Module: UNPOS

Entry Point: UNPOS

Purose:

To position an unstructured entity to a specific record.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UNPOS (NAME, RECNO)

NAME Name of the unstructured entity (Character, Input)

RECNO Record number (Integer, Input)

Method:

None

Design Requirements:

None

Error Conditions:

* None

393

Database Unstructured Utility Module: UNPUT

Entry Point: UNPUT

Purpose:

Tb add a record to an unstructured entity. The record is terminated after the transfer.

MAPOL Calling Sequence:

None

Application Calling Seguence:

CAiL UNPU (HAME, ?AP•YA, ZMORD)

A Name of the unstructured entity (Character, Input)

ARM Array containing the record to be added (Any, Input)

•ORD The number of words to be transferred (Integer, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

394

, Database Unstructured Utility Module: UNPUTP

Entry Point: UNPUTP

Purpose:

To add a partial record to an unstructured entity. The record is not terminated after the transfer.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UNPUTP (NAME, ARAY, NWORD)

NIMX Name of the unstructured entity (Character, Input)

AM Array containing the record to be added (Any, Input)

NoRD The number of words to be transferred (Integer, Input)

Method:

None

Design Requirements:

None. Error Conditions:

None

395

Database Unstructured Utility Module: UNRPOS

Entry Point: UNRPOS

Purose:

To position an unstructured entity to a specific record defined as an increment from the current record.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UNSTAT (WME, DELRID)

NAM Name of the unstructured entity (Character, Input)

DELRID Record number increment relative to the current position (Integer, Input)

Method:

None

Design Requirements:

None

Error Conditions:

None

39
396

Database Unstructured Utility Module: UNSTAT

Entry Point: UNSTAT

Purpose:

To return the length, in single-precision words, of the current record.

MAPOL Calling Sequence:

None

Application Calling Sequence:

CALL UNSTAT (NAME, RECMO, LEN)

N Name of the unstructured entity (Character, Input)

ECHO Current record number (Integer, Output)

LEN Record length in single-precision words (Integer, Output)

Method:

None

Design Requirements:

None. Error Conditions:

None

397

9. DATABASE ENTITY DESCRIPTIONS

All intermodular communication in ASTROS is done through data stored on the CADDB database.
As a result, there are many relations, matrices, and unstructured entities that are defined to store the data
requisite to the analyses. This section provides a description of each of the database entities that are used
in the ASTROS system. These data are useful both to the ASTROS programmer, who needs to know the
description of each of the entities to interpret and modify the ASTROS source code, and to the general user
in that these data are available on the database for other uses such as the Interactive CADDB Interface,
ICE. For supplementary post-processing, the matrix entities may be combined using the MAPOL language
to generate data not otherwise computed. At a more sophisticated level, a user-written Fortran module may
take existing data from the entities to perform more advanced operations that are beyond the capabilities
of the ASTROS executive system.

The entities are documented in alphabetical order and ever-y entity which is used in intermodule.•communication is included. Those entities which are used for scratch storage within a module are
documented in-line rather than in the Programmer's Manual. The entities presented here fall into three
categories: system level, hidden entities, and MAPOL entities. The first include those entities that
communicate system information between modules. The hidden and MAPOL entities are those which are
declared in the MAPOL sequence itself. The hidden entities do not subsequently appear in the MAPOL
sequence; their declaration is included as a convenieiuee to the ASTROS executive system. The most common
example of a hidden entity is any relation asseiated with a Bulk Data entry. These relations are used
internally by numerous modules but they do not appear in the MAPOL calling sequences because their
inclusion would result in an impractically Iarge number of arguments. MAPOL entities are the most relevant
and include most matrix entities and a large number of relational entities that are used to pass data between
engineering modules.

The entity documentation format is slightly different for each of the entity classes. The core
information, how ever, is the same for each class and includes the entity name, a description of its contents,
the modules that create or add data to the entity, and any additional notes required to define special data
handling functions. Each entity class then has an additional set of information.

Matrix entities have a section labeled Matrix Form which gives the row and column dimensions of
the matrix and indicates the numeric precision and the form. of the entity. Relational entities have a section
called Relation Attributes which lists the schema of the relation and defines the meaning of each of the
attributes. Finally, unstructured entities have have a section labeled Entity Structure which lists and defines
the number and contents of the records of the entity.

399

Entity: AA

Entity Type: Matrix

Description: Acceleration in the a-set merged from the AL and AR matrices (see AG).

Entity: AAICMAT

Entity Type: Subscripted Matrix

Description: Aerodynamic influence coefficient matrix for an antisymmetric boundary condi-
tion and a given Mach number. The Mach number associated with a given sub-
script is given in the TRIM relation.

Matrix Form: Square, real and asymmetric. The dimension of the matrix is equal to the number
of panels in the steady aerodynamics USSAERO model.

Created By: Module STEADY

Notes:
1. STEADY creates as many matrices as there are distinct antisymmetric Mach

numbers in the user's input packet. If a combination of symmetric and anti-
symmetric Mach numbers are used, the MINDEX changes for each distinct
Mach number. An AAICMAT entity is created for a given MINDEX only if
the corresponding Mach number requires the antisymme•tric boundary condi-
tions. It is possible, therefore, that, in the range from 1 to MINDEX, some
subscript values will not have a corresponding AAICMAT.

4

400

,Entity: AC-PT

Entity Type: Unstructured

Description: Contains one record for each independent group of aerodynamic elements with
data needed to generate the aerodynamic matrices.

Entity Structure:

RECORD WORD TYPE ITEM

1 I Key word, 1 for doublet lattice

2 I Number of panels, NP

3 I Number of strips, NSTRIP

4 I Number of boxes, NTP
5 R F, fraction of box chord from center of

pressure to downwash center

NP WORDS I NCARAY, boxes per chord
NP WORDS I NBARAY, last box on panel

WOTRID R YS aero coordinates of strip

NSTRIP R ZS center
WORDS

NSTRIP R EE strip half width
WORDST
NSTRIP R SG sine of dihedral angle
WORDS

NSTRIP R CG cosine of dihedral angle
WORDS

NTP WORDS R XIC coordinate of center of pressure

NTP WORDS R DELX box chord

NTP WORDS R XL M tangent of sweepback angle

NTP WORDS R TR box taper ratios

1 1 Key word, 2 for Doublet Lattice with
Bodies

2 I NJ, Number of J points

3 I NK, Number of K points2 -

4 I NP, Number of Panels

5 I NB, Number of Bodies

6 I NTP, Number of Boxes

7 I NBZ, Number of Z Bodies

8 I NBY, Number of Y Bodies

401

RECORD WORD TYPE ITEM

9 NTZ, Number of Z Interference Body
Elements _-

10 NTY, Number of Y Interference Body
Elements

11 i NTO, Surn ofNTP + NTZ + NTY
12 1 NTZS, Number of Z Slender BodyElements

13 1 NTYS, Number of Y Slender BodyElements

14 I NSTRIP, Number of strips on panels

NP WORDS I NCARAY, Boxes per chord

NP WORDS I NBARAY, Last box on panel
NP WORDS I NAS, Associated bodies per panel

NB WORDS I *NBEA1, Number of interference elements

NB WORDS I *NBE.:2, Z-Y flag

2 NB WORDS I *NSBEA, Number of slender elements

(cont) NB WORDS R ZB, Z Body center

NB WORDS R YB, Y Body center

NB WORDS R AVR, Half-width of body

NB WORDS R ARB, Cross-section aspect ratio

NB WORDS I NFL, O=distribution per body

NB WORDS R XLE, X-leading edge

NB WORDS R XTE, X-trailing edge

NB WORDS I NT121, number 01's for bodies

NB WORDS I NT122, number 02's for bodies

NB+STRIP R_ 1 ZS, Z - of strip center

NB+STRIP R YS, Y - of strip center

RR EE, strip alf-width
WORDS

NSTRIP R SG, sine of dihedral angle
WORDS

NSTRIP R CG, cosine of dihedral angle
WORDSSNTP+i
ENBEA1 R X, 3/4 chord

NTP+ZNBEA1 R DELX, box chord

NTP WORDS R XIC, coordinates of center of pressure

402

ITE
RECORD WORD TYPE ITEM

NTP WORDS R XLAM, tangent of sweepback angle

ZNSBEA R AO, half-widths for bodies
WORDS

NSrnA fR XIS1, X - of slender leading edge

WORDS

NSBEA R XIS2, X - of slender trailing edge
WORDS

ENSBEA R AOP, X-derivatives of body half-width

2 WORDS

(cont) INBEA1 R RIA, Radius of interference elements
WORDS

2NASWODS I NASB, associated bodiesWORDS

ZNFLWORD I IFLA1, body with 01 distributionWORDS

ZNFLWORD I IFLA2, Body with 02 distributionWORDS

Y.NTl21WORDS R TN1A, 01's for bodiesWORD'

-__NO122 R TN2A, 02's for bodiesWORDS

*Sum of entries is noted by NBEAi, where i = 1, 2

0
403

Entity: AECOMPS

Entity Type: Relation

Description: Contains data on the aerodynamic components in the planar and nonplanar
steady aerodynamics model.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Planar or nonplanar steady aerodynamics
model identifierMODEL Integer = 1 for planar model

= -1 for nonplanar model

ACID Integer Component identification number

MACROTYPE [Thxt (8) Type of macroelement (CAERO6 or PAERO6)

GROUP Integer Group identification number

ACMPNT Text (8) Component type
______ T (8) One of WING, FIN, CANARD, POD, or FUSEL

- Type of degree of freedom. For STEADY aero
TYPE Integer > 0 models all DOF's are TYPE=1. Refer to

AECOMPU for other types.

macroelement

7C 7 ~Number of chordwise boxes for lifting surfaces
Irnt~er or number of circumferential boxes for bodies

ItjNumber of spanwise boxes for lifting surfacesN S BOXInteger
or number of axial boxes for bodies

SCoordinates of the component corners in basicBNDRY Rvector coordinates

Created By:. Module STEADY

Notes:
1. The boundary coordinates ar ,' th, x, y, z coordinates for each of the corners cf

lifting elements. Body eleme16. do not use BNDRY.

The data are in the following order:

(1-3) Leading Edge Root
(4.6) Trailing Edge Root
(7-9) Trailing Edge Tip
(10-12) Leading Edge Tip

404

Entity: AECOMPU

Entity Tlype: Relation

Description: Contains data on the aerodynamic components in the unsteady aerodynamics
model.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

ACID Integer Component identification number

MACROTYPE Text (8) Type of macroelement, CAERO1 or CAERO2

GROUP Integer Group identification number

ACMPNT Text (8) Component type

One of WING or BODY

Degree of freedom type

TYPE Integer> 0 =2 for WING and Z body elements
=3 for Y body elements
=4 for ZY body elements

FIINTID IFirst internal degree of freedom on the
D Integer macroelement

NCBOX INumber of chordwise boxes for lifting surfaces

OInteger or number of circumferential boxes for bodies

Number of spanwise boxes for lifting surfaces
or number of axial boxes for bodies

BINDRY R vector (12) Coordinates of the component corners in basic
I Rcoordinates

Created By: Module UNSTEADY

Notes:
1. The boundary coordinates are the x, y, z coordinates for each of the corners of

lifting elements. Body elements do not use BNDRY.

The data are in the following order:

(A) Leading Edge Root
(B) Trailing Edge Root
(C) Trailing Edge Tip
(D) Leading Edge Tip

40

405

Entity: AEFACT

Entity Type: Relation

Description: Contains aerodynamic input data as defined on the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

VALUE Real Data value

Created By: Module IFP

Note:
1. This relation contains one tuple for each value in each set defined on the AE-

FACT card entry.

Entity: AERO

Entity Type: Relation

Description: Contains basic aerodynamic data for use in unsteady aerodynamics as input from
the bulk data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

ACS ID Integer > 0 Coordinate system identification number for

n the aerodynamic coordinate system

REFC Real > 0.0 Reference length for reduced frequency

RHOREF Real > 0.0 Reference density

Created By: Module IFP

406

. Entity: AEROGEOM

Entity Type: Relation

Description: Contains the aerodynamic planform geometric grid points for the planar and non-
planar steady aerodynamics model. These grid points are not used for data recov-
ery, but can be used in combination with the "elements" in CAROGEOM to create
an ASTROS FE model using RODs and QUADs that represents the paneling of
the aero model.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

MODEL Integer =1 for the planar model
=- I for the nonplanar model

GRI DID Integer Aerodynamic grid identification number

x Real

Y Real Basic coordinates of the geometric point

z Real

Created By: STEADY and/or STEADYNP modules

Notes:
1. These grid points represent the airfoil and panel geometry of the aerody-

namic model identified by the MODEL attribute. The connectivity of these
grid points is given in the CAROGEOM entity.

407

Entity: AEROS 6
Entity Type: Relation

Description: Contains the basic parameters for static aeroelasticity as input from the Bulk
Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

ACSID Integer > 0 Aerodynamic coordinate system identification
RCSID I > 0 Reference coordinate system for rigid body

motions

REFC Real > 0.0 Reference chord length

REFB Real > 0.0 Reference span

REFS Real > 0.0 Reference wing area

GREF Integer > 0 Reference grid point

REFD Real > 0.0 Body component reference diameter

REFL Real > 0.0 Body component reference length

Created by: Module IFP

Entity: AESURF

Entity Type: Relation

Description: Contains the specification of an aerodynamic control surface as input from the
Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

LABEL Text (8) Alphanumeric data identifying the control
ABEL Text (8) surface

TYPE Text (8) Surface type
ACID I > 0 Aerodynamic component identification number

fInteger for control surface definition

CID Integer > 0 Coordinate system defi;king the surface hinge

line

FBOX1 Integer > 0 First aerodynamic box on the control surface

LBOX1 Integer > 0 Last aerodynamic box on the control surface

Created By: Module IFP

408

Entity: AF

Entity 'ype: Matrix

Description: Merged from the AA matrix (see AG).

Entity: AG

Entity Type: Subscripted Matrix

Description: Contains the accelerations of the structural degrees of freedom.
Matrix Form: A variable sized matrix having one row for each structural degree of freedom and

one column for each load condition in the current boundary condition.
Created By: MAPOL

Notes:
1. The dimension of this subscripted matrix must be large enough for all optimi-

zation and analysis boundary conditions.
2. This entity is only filled for analysis of unrestrained structures.
3. The MAPOL sequence recovers this matrix in the following order (see the

Theoretical Manual for the explicity form of this recovery):

[AA-4AF

[~AF

*UM contains accelerations in the M-set. The entity name is reused in the
MAPOL sequence.

Entity: AGA

Entity Type: Matrix

Description: Contains the active acceleration vectors for the current boundary condition.
Matrix Form: A matrix having one column for each active acceleration vector and one row for

each degree of freedom in the structural model.
Created By: MAPOL

Notes:
1. This entity is only generated during sensitivity evaluation of unrestrained

boundary conditions.

409

Entity: AICMAT

Entity Type: Subscripted Matrix

Description: Aerodynamic influence coefficient matrix for a symmetric boundary condition and
a given Mach number. The Mach number associated with a given subscript is
given in the TRIM relation.

Matrix Form: Square, real and asymmetric. The dimension of the matrix is equal to the number
of panels in the steady aerodynamics USSAERO model.

Created By: Module STEADY

Notes:
1. STEADY creates as many matrices as there are distinct symmetric Mach

numbers in the user's input packet. If a combination of symmetric and anti-
symmetric Mach numbers are used, the MINDEX changes for each distinct
Mach number. An AICMAT entity is created for a given MINDEX only if the
corresponding Mach number requires the symmetric boundary conditions. It
is possible, therefore, that, in the range from 1 to MINDEX, some subscript
values will not have a corresponding AICMAT.

Entity: AICS

Entity Type: Matrix

Description: Steady aerodynamic influence coefficient matrix for a given boundary condition
in the structural coordinates.

Matrix Form: Square, real and asymmetric. The dimension of the matrix is equal to the num-
ber of degrees of freedom in the f-set.

Created By: MAPOL

Notes:
1. This matrix is derived from splining the AICMAT or AAICMAT matrix to the

structural degrees of freedom.

410

O Entity: AIRFOIL

Entity Type: Relation

Description: Contains the airfoil properties to be used in the aerodynamic analyses as defined
on the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

ACID Integer > 0 Aircraft component identification number

ACMPNT Text (8) Component type (i.e. WING)

CP Integer > 0 Coordinate system identification number

CHORD Integer > 0 AEFACT setid for the chordwise division points

UST I > 0 AEFACT setid for the upper surface half
thicknesses

LST Integer >0 AEFACT setid for the lower surface half
-_ _thicknesses

CAMBER Integer >0 AEFACT setid for the camber ordinants

RADIUS Real > 0 Airfoil leading edge radius

Xl, Yl, Z1 Real Location of point 1 in coordinate system CP

X12 Real > 0.0 Edge chord length in coordinate system CP
IPANEL Inte Ž0 AEFACT setid containing chordwise cuts for

wing paneling

Created By: IFP Module

411

Entity: AIRFRC

Entity Type: Subscripted Matrix

Description: Rigid body aerodynamic load vectors for a given Mach number. There is one vec-
tor for each configuration parameter associated with the Mach index. There are
six symmetric parameters: NX, NZ, QACCEL, THKCAM, ALPHA and QRATE
and 6 antisymmetric parameters: NY, PACCEL, RACCEL, BETA, PRATE,
RRATE. In addition, each symmetric and antisymmetric control surface AESURF
will generate a column. For a given subscript, the AIRFRC matrix contains the
six columns for the symmetric parameters plus one column for each symmetric
AESURF if the SYMMETRIC forces are needed for the associated Mach number.
It contains six columns for the antisymmetric parameters and one column for
each antisymmetric AESURF if the ANTISYMMETRIC forces are needed for the
associated Mach number. If both are needed, all 12 parameters and all AESURF
entries in the model have columns. The ordering of the columns corresponds to
the order of entries in the STABCF entity.

Matrix Form: Rectangular and real. The number of rows is equal to the number of panels in the
steady aerodynamics model while the number of columns is equal to the number
of entries in the STABCF relation that have the same MACHINDX value as the
subscript value. The columns of AIRFRC are stored in the same order as the en-
tVies in STABCF. Refer to the STABCF entity for more details.

Created By: STEADY Module

Notes:
1. STEADY creates as many matrices as there are distinct Mach numbers in the

bulk data packet. 4
Entity: AJJTL

Entity Type: Matrix

Description: List of unsteady aerodynamic matrices to compute panel pressures due to slopes
at the control point.

Matrix Form: Square, complex matrix with the number of rows and colums equal to the number
of aerrdynamic panels.

Created By: AMP

Notes:
1. AJJTL is a matrix list with the number of matrices equal to the number of M-

k pairs in the input stream.

Entity: AT.

Entity Type: Matrix

Description: Acceleration in the 1-set obtained from D and AR (see AG).

412

O Entity: AMAT

Entity Type: Matrix

Description: Matrix containing the sensitivity of the constraints to changes in the design vari-
ables.

Matrix Form: The number of columns is equal to the number of active constraints. The number
of rows is equal to the number of design variables.

Created By: ACTCON, AEROEFFS, AEROSENS, FREQSENS, FLUTSENS, MAKDFV,
MKAMAT, LAMINSNS

Notes:
1. The columns are written in the order they appear on the CONST relation ex-

cept that, for a given boundary condition, all the constraints for a given sub-
case are grouped together. On the CONST relation, these constraints are
grouped by type.

2. See CONST.
3. CONST and AMAT are brought into alignment in DESIGN where the

CONST tuples are ordered to have all subcases grouped together.

Entity: AR

Entity Type: Matrix

Description: Contains the accelerations for the support degrees of freedom (see AG).

Matrix Form: Avariable sized matrix having one row for each support degree of freedom and
one column for each load condition in the current boundary condition.

Created By: Module INERTIA

Notes:
1. This matrix is only formed for the analysis of unrestrained structures.

Entity: ASET

Entity Type: Relation

Description: Contains the extsrnal grid identification numbers and components associated
with the analysis set as defined on the ASET entries of the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 ASET identification number

GRI Dl Integer > 0 Grid or scalar point identification number

COMPNTS Integer >_0 Component number; Zero for scalar points, 1-6
for grid points

Created By: Module IFP

Notes:
1. Used by the MKUSET module to build the USET relation.

413

Entity: ASETI

Entity Type- Relation

Description: Contains the external grid identification numbers and components associated
with the analysis set as defined on the ASET1 entries of the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 ASET identification number

COMPNTS Integer Ž 0 Component number; Zero for scalar points, 1-6
for grid points

GRID1 Integer > 0 Grid or scalar point identification number

Created By: Module IFP

Notes:
1. Used by the MKUSET module to build the USET relation.

Entity: ATTACH

Entity Type: Relation

Fescription: Contains the definitions of aerodynamic boxes whose forces are to be attached to
a referenced grid as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

Element identification number of an
aerodynamic macroelement

External box identification number of the first
aero box on the macroelement

External box identification number of the last
aero box on the macroelement

The external identification number of the
referenced grid point

Created By: Module IFP

414

. Entity: AXSTA

Entity Type: Relatioh1
Description: Contains the body axial station parameters for the aerodynamic model as input

from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

BCID Integer > 0 Body component identification number

XSTA Real X ordinate of body station

CBOD Real Z ordinate of body station

ABOD Real > 0.0 Body cross-sectional area at XBOD

YPAD Integer Ž0 AEFACT setid containing the y-ordinates of
the body section

ZRAD Integer Ž0 AEFACT setid containing the Z-ordinates ofZRAD ntege > 0 the body section

Created By: Module IFP

, Entity: BDD

Entity Type: Matrix

Descriptioni: Damping matrix in the direct dynamic set.

Matrix Form: Square matrix with the number of rows and columns equal to the number of de-
grees of freedom in the d-set.

Created By: DMA

415

Entity: BEAMEST I
Entity Type: Relation

Description: Contains the element summary data for the BAR element.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

EID Integer > 0, key Element identification number
PID I >0 Element property identification

DInteger number

SILl Integer > 0 Internal grid point id for end A

SIL2 Integer > 0 Internal grid point id for end B

ORIENTX Real

ORIENTY Real Orientation vector for element

ORIENTZ Real

The external coordinate system in
ICSSV Integer >0 which the orientation vector is

defined.

PINA, P1MB Integer L 0 The offset pinned degrees of freedom
for ends A and B

OFFSETAX Real

OFFSETAY Real

OFFSETAZ Real The offset vectors for ends A and B

OFFSETBX Real

OFFSETBY Real

OFFSETBZ Real

MID1 Integer > 0 The material id for the element

AREA Real > 0 The beam cross-sectional area

Ii Real Ž0 The area moment of inertia (Plane 1)

12 Real Ž0 The area moment of inertia (Plane 2)

TORSION Real Ž0 The beam torsional constant

NSM Real Ž0 The beam non structural mass

-Cl, C2, Dl, D2 Real Element stress recovery coefficients

El, E2, F1, F2 Real

KFACT1 Real Shear area factor (plane 1)

KFACT2 Real Shear area factor (plane 2)

112 Real Beam product of inertia

416

NAME TYPEIKEY DESCRIPTION

RISQR Real

R2 SQR Real Inertia term; Definition for design

ALPHA Real

COORD1 Integer >0 External coordinate system of end A

X1, Y1, Zi Real Basic coordinates of end A

COORD2 Integer >0 External coordinate system of end B

X2, Y2, Z2 Real Basic coordinates of end B

SCON Integer Stress constraint flag

DESIGN Integer Design flag

STHRM Real Thermal stress term

STHRMA Real Thermal strain term

Pointer to TREF entity for thermal
TREFPT Integer stress/load evaluation

Created by: Module MAKEST
Notes:N s 1. This relation contains one tuple for each beam element in the problem. It is

built from the CBAR, PBAR and associated material and design relations.

Entity: BFRC

Entity Type: Matrix

Description: Matrix of rigid body load vectors for unit values of angle of attack, pitch rate and
trim surface deflection.

Matrix Form: Rectangular real matrix with three columns and rows equal to the number of pan-
els in the unsteady aerodynamics model.

Created By: Module BLASTFIT

0
417

Entity: BGPDT

Entity Type: Relation

Description: Contains the coordinates of the grid points in the basic coordinate system.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

EXTID Integer > 0 The grid or scalar point external identification
nuwber

INTID Integer > 0 Equivalent internal identification number

FLAG Integer > 0 Flag indicating the point is a grid point or a
scalar point

The displacement coordinate system for theCD Integer grid point

X, Y, Z Real Spatial coordinates of the point in the basic

I~ I coordinate system

Created by: Module BCBGPDT

Notes:
1. This relation contains one tuple for each grid or scalar point in the problem.
2. This relation is built from the GRID, SPOINT, EPOINT, CSTM and SEQGP

relations.
3. The FLAG equals 6 if the point is a grid point and equals 1 if a scalar point

and 0 if not in the g-set.
4. The internal identification number is determined by assigning INTID in in-

creasing order of EXTID's.
5. Scalar points are also denoted by CD=-1; X=Y=Z=0.0.

Entity: BHH

Entity Type: Matrix

Description: Damping matrix in the modal dynamic set.

Matrix Form: Square matrix with the number of rows and columns equal to the number of de-
grees of freedom in the h-set.

Created By: DMA

Notes:
1. Info (11) for the entity contains a coupled flag

= 0 Uncoupled
= 1 Coupled

2. Info (12) contains damping data
= 0 Modal damping only
= 1 Viscous damping only
= 2 Both modal and viscous damping

418

. Entity: BLAST

Entity Type: Relation

Description. Contains the definition of parameters for use in nuclear blast response analysis
as input from the bulk data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

BLID Integer > 0 Blast set ID

ALT Real > 0.0 Aircraft altitude

VEL Real > 0.0 Aircraft velocity

WKT Real > 0.0 Weapon yield

HGRD Real Height of the ground

KGRD Integer Flag denoting presence of ground

BALT Real Blast altitude

MACH Real Mach number

DELTAX Real X-distance from A/C to blast

DELTAY Real Y-distance from A/C to blas;t

TMIN Real > 0.0 Minimum time used in curve fit

TMIN Real > 0.0 Maximum time used in curve fit

NTIME Integer > 0 Number of time steps

BMIN Real > 0 Minimum decay value used in curve fit

BMAX Real > 0 Maximum decay value used in curve fit

NBETA Integer > 0 Number of decay values

SYMXY Integer Symmetry flag for xy plane

XYMXZ Integer Symmetry flag for xz plane

TRSURF Text (8) Trim surface label

N Real Load factor for trim calculation

Created By: Module IFP

Notes:

419

Entity: BLGTJA

Entity Type: Matrix

Description: A partitio.i of matrix UJGTKA used in the nuclear blast analysis to spline aerody-
namic forces to the structure.

Matrix Form: Rectangular real matrix having one row for each structural degree of freedom in
the a-set and one column for each panel in the unsteady aerodynamics model.

Created By: Module BLASTFIT

Entity: BLSTJA

Entity Type: Matrix

Description: A partition of matrix UGTKA used in the nuclear blast analysis to spline struc-
tural displacements to the panel slopes.

Matrix Form: Rectangular real matrix having one row for each structural degree of freedom in
the a-set and one column for each panel in the unsteady aerodynamics model.

Created By: Module BLASTFIT

Entity: BODY

Entity Type: Relation

Description: Contains the body configuration parameters for the aerodynamic model as input
from the Bulk Data file. 4

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

BCID Integer > 0, key Body component id

ACMPNT Text (8) Component type (i.e., POD)

CP Integer > 0 Coordinate system id for geometry input
NRAD I r0 Number of equal body cuts used to define

ntethe body panels

X, YZ Real Ordinates of the body in coordinate system
CP

Created By: Module IFP

420

. Entity: BTEM

Entity Type: Matrix

Description: A scratch matrix in the blast calculation.

Matrix Form: Rectangular real matrix with the number of rows equal to the number of elastic
modes retained in the blast analysis and three columns.

Created By: MAPOL

Notes:
1. This matrix is the solution to the equation:

[IXEE 3 • [BIM• 4 = [2 1

421

Entity: CAERO1 6
Entity Type: Relation

Description: Contains an aerodynamic macroelement (panel) in terms of two leading-edge loca-
tions and side chords. This is used for unsteady aerodynamics.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number
PID I > 0 Identification number of property card. Used to

specify associated bodies

CP Integer > 0 Coordinate system for locating points 1 and 4

Number of spanwise boxes; if a positive value

NSPAN I 0! is given NSPAN, equal divisions are assumed;
if zero or blank, a list of division points is given
at LSPAN

Number of chordwise boxes; if a positive value

NCHORD In e is given NCHORD, equal divisions are
assumed; if zero or blank, a list of division
points is given at LCHORD

ID of an AEFACT data card containing a list of
LSPAN Integer >0 division points for spanwise boxes. Used only if

NSPAN is zero or blank

ID of an AEFACT data card containing a list of
LCHORD Integer Ž 0 division points for chordwise boxes. Used only

if NCORD is zero or blank
GID I e> 0 Interference group identification (aerodynamic

elements with different IGID's are uncoupled)

Xl, Y1, Z1 Real Location of point 1 in coordinate system CP

X 12 Real Ž0 Edge chord length (in aerodynamic coordinate
system) (Cannot be zero if X43 is zero)

X4, Y4, Z4 Real Location of point 4 in coordinate system CP

X43 Real Ž0 Edge chord length (in aerodynamic coordinate
I I__ Isystem)(Cannot be zero if X12 is zero)

Created By: Module IFP

422

. Enity: CAERO2

Entity Type: Relation

Description: Contains the definition of an aerodynamic body for unsteady aerodynamics as in-
put from the bulk data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

PID Integer > 0 Property identification number

CP Integer >0 Coordinate system for locating point 1

NSB Integer >0 Number of slender body elements

NINT Integer _0 Number of interference elements

LSB Integer Ž0 AEFACT identification number defining
slender body division points

LINT Ž0! AEFACT identification number defining
interference element division points

IGID Integer > 0 Interference group identification

Xl, Y1, Zi Real Location of point 1 in coordinate system CP

X12 Real > 0.0 Length of the body in the x-axis of the
aerodynamic coordinate system

Created By: Module IFP

423

Entity: CAER06 6
Entity 'rfpe: Relation

Description: Contains the definition of an aerodynamic macroelement used in aerodynamic
analyses as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION
ACID Integer > 0 Aircraft component identification number

ACMPNT Text (8) Component type (i.e., WING)

CP Integer >0 Coordinate system identification number for
geometry input

GROUP Integer > 0 Group identification number

SPAN Integer Ž0 AEFACT setid for the division points of
spanwise boxes

CHORD Integer >0 AEFACT setid for the chordwise division points

Created By: Module IFP

I

424

Entity: CAROGEOM

Entity Type: Relation

Description: Contains the connectivity data for the aerodynamic planforr of the plmiar And
nonplanar steady aerodynamics model. These elements are not used for data re-
covery, but can be used in combination with the "grids" in AEROGEOM to create
an ASTROS FE model using RODs and QUADs that represents the paneling of
the aero model.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

MODEL Integer = 1 for the planar model
= 1 for the nonplanar model

EID I >0 External aerodynamic box identification
IDInteger numbe

number

Internal aerodynamic box identification
INTEID Integer > 0 number (aerodynamic degree of freedom

number) see Remark 2

Macroelement identification number on whichMACROID Integer > 0 the box lies

MACROTYP Text (8) Macroelement type (e.g. PAERO6, CAERO6)

CMPNT Text (8) Component type (FIN, CANARD, WING,
CMPNT Tet8) FUSEL, of POD)

Number of grids connected to the box
NGRID Integer > 0 = 4 or 3 for panels

= 2 for airfoil line segments
GRID InGrid identification number of an AEROGEOM

grid for inboard/upstream location

GRID2 IGrid identification number of an AEROGEOM

grid for inboard/downstream location

GRID3 I e Grid identification number of AEROGEOM

grid for outboard/downstream location

Grid identification number of AEROGEOMGRID4 Integer >Ž0 grid for outboard/upstream location

Created By: STEADY and/or STEADYNP modules

Notes:
1. The grid points referred to by this relation are stored in the AEROGEOM en-

tity.
2. Airfoil geometry is also defined by this relation but the "elements" are line

segments not related to the control points of the panel model. For these ele-
ments, the internal identification number is set to - 1 rather than the degree
of freedom identifier in solution matrices.

3. Airfoil geometry is defined by any and all elements with NGRID=2.

425

Entity: CASE

Entity Type: Relation

Dezcriptien: Contains the case parameters for each analysis within each boundary condition
as input in the solution control packet.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/analyze flag
OAFLAG Integer > 0 = 1 Optimize

= 2 Analyze

BCID Integer > 0 Boundary condition identification
number

MPCSETID Integer Multipoint constraint set identification
number

SPCSETID ISingle point constraint set
D Integer identification number

RESETID InGuyan reduction constraint set

D Integer identification number

SUPSETID Integer Support set identification number

METHOD Integer Real eigenvalue extraction method set
identification number

DYNRED Integer Dynamic reduction set identification
ntgrnumber

Inertia relief mode shapes setINERTIA Integer identification number

Transfer function set identificationT FS ET I D Integer number

K2PP Text (8) K2PP name

M2PP Text (8) M2PP name

B2PP Text (8) B2PP name

K2GG Text (8) K2GG name

M2GG Text (8) M2GG name

426

NAME TYPE/KEY DESCRIPTION

Discipline flag
1 Statics

=2 Modes
= 3 Saero

DIS FLAG Integer 4 Flutter
5 Transient
6 Frequency
7 Buckling

= 8 Blast
9 Nonplanar Saero

MECHLOAD Integer Mechanical load set identificationnumber

THRMLOAD Integer Thermal load set identification number

GRAVLOAD Integer Gravity load set identification number

TRIMID Integer Trim set identification number

Trim symmetry flag
= -1 Anti symmetric

TRIMSYM Integer - o M ymmetric
= 0 Asymmetric

- 1 Symmetric

DCONST Design constraint set identification
T Integer number

DCSTRESS Integer Stress constraint set identification
number

DCSTRAIN Integer Strain constraint set identification
number

DLOADID Integer Dynamic load set identification number

Dynamic response method
DRMETH Integer = 1 Direct

= 2 Modal

TIMESTEP Integer Time step set identification number
SInteger Frequency step set identification

FREQSTEP inumber

Fast Fourier transform set
FFTID Integer identification number

GUSTID Integer Gust set identification number

Initial condition set identification
INI TCON Integer number
RANDOMID Integer Random set identification number

BLASTID Integer Blast set identification number

427

NAME TYPE/KEY DESCRIPTION
BUCKLEID Integer Buckling eigenvalue extraction set

identification number

FLUTI D Integer Flutter set identification number

CONTROL Text (8) Name of aerodynamic extra point
splining matrix

DAMPID Integer Damping set identification number

ESET Integer Extra point set identification number

Acceleration print selection
WORD I Print set identification
number > 0, or

= 0 NONE
= -1 ALL
= --2 LAST

WORD 2 Punch set identification
number
WORD 3 Print form
= 0 Rectangular
= 1 Polar
WTORD 4 Punch form

WORD 5 Piint frequency set
ACCEPRNT Integer vector (12) identification number

WORD 6 Punch frequency setidentification number
WORD 7 Pn..it iteration set

identification number
WORD 8 Punch iteration set
identification number
WORD 9 Print mode set identification
number
WORD 10 Punch maode set
identification number
WORD 11 Print time set identification
number
WORD 12 Punch time set identification
number

AIRDPRNT Integer vector (12) Aerodynamic displacement print
selection

Displacement print selection
WORD 1 Print set identification
number
WORD 2 Punch set identification

DISPPRNT Integer vector (12) number
WORD 3 Print form

= 0 Rectangular
= 1 Polar
WORD 4 Punch form

428

NAME TYPEIKEY DESCRIPTION

ENERPRNT Integer vector (12) Strain energy print selection
FORCPRNT Integer vector (12) Element force print selection

GPFOPRNT Integer vector (12) Grid point force print selection
GPWGPRNT I vector (12) Grid point weight generation print

T Integer selection

LOADPRNT Integer vector (12) Load print selection

MASSPRNT Integer vector (12) Mass matrix print selection
MPCFPRNqT I nteger vector (12) Multi-point constraint force print

__ I vecr (selection

QQHHPRNT Integer vector (12) QHiH matrix print selection

QHJPF3,TT Integer vector (12) 1 QH.J matrix print selection
ROOTPRNT I vector (12) Flutter and normal modes eigenvalue

T Integer print selection

Single point constraint force printSPCFPRNT IInteger vector (12) selection

STIFPRNT Integer vector (12) Stiffness matrix print selection

STRAPRNT Integer vector (12) Strain print selection

STREPRNT Integer vector (12) Stress print selection

TPREPRNT Integer vector (12) Trim pressure coefficient print selection

JVELOPRNT Integer vector (4) Velocity print selection

TRIMPRNT Integer Steady aeroelastic trim print toggle

TITLE Text (72) User label TITLE

SUBTITLE Text (72) User label SUBTITLE
TABEL Text (72) User label LABEL

Created By: Module Solution

Notes:
1. The format of the ACCEPRNT vector is typical of the format of all the print

selection vectors. Additionally, the format for the print set Identification num-
ber in the ACCEPRNT vector is typical of that of the other set Identification
numbers in the vector.

2. The CASE, JOB and OPTIMIZE relation entities together contain the solu-
tion control requests as input in the; solution control packet. CASE contains
the case-dependent parameters, JOB contains the case-independent requests
and OPTIMIZE contains the optimization-dependent requests.

429

Entity: CBAR

Entity Type: Relation

Description: Contains the element connectivity data for the BAR element as input from the
Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

PIDi Integer > 0 Property identification number of a PBAR
tuple

GRID1 Integer > 0 Grid point identification for end A

GRID2 Integer > 0 Grid point identification for end B

GRID3 Integer >0 Grid point identification for orientation
-_ _ vector definition

ORI ENTX Real

ORIENTY Real Orientation vector

ORIENTZ Real

TMAX Real Maximum area for design

PINA Integer > 0 Components pinned at end A

PINB Integer Ž0 Components pinned at end B

OFFSETAX Real

OFFSETAY Real
Offsets from GRID)1 and GRID2 to the

OFFSETAZ Real ends of the beam element
OFFSETBX Real

OFFSETBY Real

OFFSETBZ Real

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the BEAMEST relation.

4
m 430

Entity: CELASI.

Entity Type: Relation

Description: Contains the element connectivity data for the scalar spring element as input
from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

PIDI_ _ Integer > 0 Identification number of a PELAS property
entry

GRI D1 integer > 0 Grid or scalar point identification number

COMPNTS1 6 Ž Integer Ž0 Component number

GRI D2 Integer _ 0 Grid or scalar point identification number

COMPNTS2 6 2 Integer Ž 0 Component number

TMMX . Real Maximum spring constant value for design J
Created By: Module IFP

Notes:
1s. This relation is used by the MAKEST module to bujid the ELASEST relation.

431

Entity: CELAS2

Entity Type: Relation

Description: Contains the element connectivity and pt opcrty data for the wcalar epring ele-
ment as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

K Real The value of the scalar spring constant

GRID1 Integer Ž0 Grid or scalar point identification number

COMPNTS1 6 > integer > 0 Component number

GRI D2 Integer >0 Grid or scalar point identification number

COMPNTS2 6 > Integer Ž_ 0 Component number

DAMPCOEF Real Damping coefficient

STRSCOEF Real Stress coefficient

TMIN Real Minimum spring constant value for design

TMAX Real Maximum spring constant value for design

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the ELASEST relation.

432

Entity: CIHEXI

Entity Type: Relation

Description: Contains the element connectivity data for the linear isoparametric hexahedron
element as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

PID Integer > 0 Identification number of property card

GRID1, GRID2 Integer > 0

GRID3, GRID4 Integer > 0 Grid point identification numbers

GRI D5, GRID6 Integer > 0 defining the element geometry

GRID7, GRID8 Integer > 0

Created By: Module IFP

Notes:
1. This relation is used by the MAXEST module to build the IHEXlEST rela-

tion.

433

Entity: CIHEX2

Entity Type: Relation

Description: Contains the element connectivity data for .he quadratic isoparametric hexahe-
dron element as input from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

EID Integer > 0, key Element identification number
PID Integer > 0 Identification number of property

card

GRID1, GRID2 Integer > 0

GRID3, GRID4 Integer > 0

GRID5, GRID6 Integer > 0

GRID7, GRID8 Integer > 0 Grid point identification numbers

GRID9, GRIDi0 Integer > 0 defining the element geometry

GRID11, GRID12 Integer > 0

GRID13, GRID14 Integer > 0

GRID15, GRID16 Integer > 0

GRID17, GRID18 Integer >0

GRID19, GRID20 Integer > 0

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the IHEX2EST rela-

tion.

434

. Entity: CIHEX3

Entity Type: Relation

Description: Contains the element connectivity data for the cubic isoparametric hexahedron
element as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number
D ItgIdentification number of property

card

GRIDI, GRID2 Integer > 0

GRID3, GRID4 Integer > 0

GRID5, GRID6 Integer > 0 Grid point identification numbers

GRID7, GRID8 Integer > 0 defining the element geometry

GRID9, GRID10 Integer > 0
GRID11, GRID12 Integer > 0

GRID13, GRID14 Integer > 0

GRID15, GRID16 Integer > 0

GRID17, GRID18 Integer > 0

GRID19, GRID20 Integer > 0

GRID2 1, GRI D22 Integer> 0 Grid point identification numbers

GRID23, GRID24 Integer > 0 defining the element geometry

GRID25, GRID26 Integer > 0

GRID27, GRID28 Integer > 0

GRID29, GRID30 Integer > 0

GRID31, GRID32 Integer > 0

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the IHEX3EST rela-

tion.

435

Entity: CLAMBDA

Entity Type: Relation

Description: Contains results of a flutter analysis for a series of boundary conditions, Mach
numbers and atmospheric densities.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

NITER Integer Iteration number

BCID Integer The boundary condition number

MACH Real Mach number of the flutter analysis

RHOREF Real Reference atmospheric density

RHO Real Atmospheric density of the flutter analysis

VELOCITY Real True velocity of the flutter analysis

FSID Integer Flutter set identification

SCNUM Integer Flutter subcase identification nuriber

MODENO Integer Mode number associated with the flutter

RLAMB Real Real part of the flutter eigenvalue

ILAMB Real Imaginary part of the flutter eigenvalue

DAMPVAL Real Damping ratio

Frequency in radians per second of the flutter
OMEGA Real eigenvalue

= 2 * VELOCITY * ILAMB / REFB

Pointer to CONST tuple for the associated
PNUM Integer constraint

Created By: Module FLUTTRAN

Notes:
1. The reference semichord for the unsteady area model is stored as the elev-

enth word of the INFO array.

4

436

,Entity: CMASSI

Entity Type: Relation

Description: Contains the element cnnectivity data for the scalar mass e'ement as input from
the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number
PIDIn r >0 Property identification number of a

DInteger PMASS tuple

GRID1 Integer > 0 Grid or scalar point identification number
COMPNTS1 Integer1>0 Component of GRIDI to which the element

Ig is connected

GRI D2 Integer > 0 Grid or scalar point identification number
COMPNTS2 I Ž0 Component of GRID2 to which the element

2 Integer is connected

TMAX Real Maximum mass for design

Created 13y: Module IFH

Notes:
1. This relation is used by the MAKEST module to build the MASSEST relation.

437

Entity: CMASS2

Entity Type- Relation

Description: Contains the element connectivity data for the scalar mass element as input from
the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

MASS Real The value of the scalar mass

GRID1 Integer > 0 Grid or scalar point identification number

COMPNTS1 Integer > 0 Component of GRID1 to which the element
is connected

GRID2 Integer Ž0 Grid or scalar point identification number

COMPNTS2 Integer Ž0 Component of GRID2 to which the element

is connected

TMIN Real Minimum mass for design

TMAX Real Maximum mass for design

Created By: Module IFP

Notes: 4
1. This relation is used by the MAKEST module to build the MASSEST relation.

Entity: CONEFFF

Entity Type: Relation

Description: Contains the definition of adjustment factors for control surface effectiveness val-
ues for use in flutter analysis.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Effectiveness identification number

EFFVAL Resil Effectiveness value

Structural mode to which the effectiveness is toMODE Integer > 0 b plebe applied

MACROID Integer aerodynamic component (macroelement) on
which the control surface lies

First and last box whose effectiveness is to beBOX1, BOX2 Integer > 0 aledaltered

Created By: Module IFP

438

, Entity: CONEFFS

Entity Type: Relation

Description: Contains the definition of adjustment factors for 'ontrol surface effectiveness val-
ues for use in static aeroelastic analysis and nonplanar aerodynamic analysis.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Effectiveness identification number

LABELI 'Text (8) Control surface label

EFFI Real Effectiveness value for the associated surface

Created By: Module IFP

Entity: CONLINK

Entity Type: Relation

Description: Contains the control surfaces and participation factors specified on the CON-
LINK Bulk Data entry.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Label of the control surface that is made up ofa combination of other conatro surfaces

LABELI Text (8) Label of control surface defined by AESURF

VALUEI Real Participation factor

Created By: Module IFP

439

Entity: CONMI

Entity Type: Relation

Description: Contains the element data for a 6 x 6 symmetric mass matrix at a grid point as in-
put from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

GRID1 Integer > 0 Grid point identification number

Coordinate system identification
number for matrix coordinate system

MII, M21, M22 Real

M31, M32, M33 Real

M41, M42, M43 Real Elements of the 6x6 symmetric mass
M4 4 Real matrix

M51, M52, M53 Real
M54, M55 Real

M61, M62, M63 Real

M64, M65, M66 Real

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the CONMIEST rela-

tion.

44

440

Entity: CONMIEST

Entity Type: Relation

Description. Contains the element summary data for a concentrated mass defined in the
CONM! relation.

Relation Attributes:

"NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

SILl Integer > 0 Internal grid point identificationSI~l ntege > 0number

CIDMASS Ž 0 Coordinate system identification

Ieer number for matrix coordinate system

M11, M21, M22 Real

M31, M32, M33 Real

M4 1, M42, M43 Real Elements of the 6x6 symmetric mass

M4 4 Real matrix

M51, M52, M53 Real

M54, M55 Real

M61, M62, M63 Real

M64, M65, M66 Real

CORD1 Integer Ž0 Coordinate system of SILl

X, Y, Z Real Basic coordinates of SILl

Created By: Module MAKEST

Notes:
1. This relation is built from the CONTM1 and grid relations. It contains one tu-

ple for each concentrated mass element defined in the CONM1 relation.

441

Entity: CONM2

Entity Type: Relation

Description: Contains the element data for a concentrated mass at a structural grid point as
input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer.> 0, key Element identification number
GRID1 Integer > 0 Grid point identification number
CID1 Integer Coordinate system identification

number

MASS Real Value of the concentrated mass

Xl, X2, X3 Real Components of offset from GRID I
to the mass

Ill, 121, 122 Real Mass moments of inertia

131, 132, 133 Real
TYIN Real Minimum mass for design

TMAX Real Maximum mass for design

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the CONM2NEST rela-

tion.

442

Entity: CONM2EST

Entity Type: Relation

Descript'on: Contains the element summary data for a concentrated mass element defined in
the CONM2 relation.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

SM Itege > 0Internal grid point
SILl Integer > 0 identification number

CIDMIASS Integer >0 Coordinate system
-__identification number

MASS Real Mass value

SReOffsets
from SILl to mass (see

OFFSETY Real note 1)

OFFSETZ Real

131, 121,122 Real Mass moments of inertia (see

131, 132, 133 Real Note 1)

COORD! Integer >0 Displacement coordinate
-_ _system for SILl

X, Y, Z Real Basic coordinates of SILl

LDESIGN Integer Design flag

Created By: Module MAKEST

Notes:
1. Refer to the CONM2 Bulk Data Entry for further details on the definition of

the OFFSET and Iij terms.
2. This relation is built from the CONM2 grid relations. It contains one tuple for

each concentrated mass element defined in the CONM2 relation.

0
443

Entity: CONROD

Entity Type: Relation

Description: Contains the connectivity and property data for a ROD element as input from the
Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTIOV

EID Integer > 0, key Element identification numnber

GRID1 Integer > 0 Gd point identification number for end A
GRID2) Integer > 0 Grid point identification number for end B

MIDI Integer > 0 - Mater'al property idantification number

AREA Real >Ž 0 Element cross-sectional area

TORSION Reeal] >0 Element torsional constant,

STRSCOEF Real Stress recovery factor

NSM Real E0leent nonstructural mass
TMIN ! R,,l--- 1 0 Minimumi cross•-sectional area in fdesign

TMAX Real -0 i Maximumn cross-wctional area in desgni

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the RODEST relation.

444

S Entity: CONST

Entity Type: Relation
Descnption: Contains the constraint values and constraint sensitivity processing data for the

current design iteration.

Relation Attributes:

-- NAIM TYPE/KEY ' DESCRIPTION

N]T'SR Inte-er > 0 Iteratiun number
CVAL Real Constraint value

CTYPE Integer> 0 Constraint type (see Note 2 below)

Boundary condition identification number for
constraint value if boundary condition

BCID Integer > 0 dependent
or NTULL Non-boundary dependent constraints are:

minimum thiclness (CTYPE=1)
maximum thickness (CTYPE=2)

Discipline type flag from CASE relation (where
appropriate)
Non-discipline dependent constraints are:

DISFLAG Integer > 0 minimum thickness (CTYPE=1)
or NULL maximum thickness (CTYPE=2)

laminate composition (CTYPE=13)
laminate min. gauge (CTYPE= 14)
ply min. gauge (CTYPE=15)

I Flag denoting status of the constraint as active
ACTVFLAG Integer.> 0 (=1) or inactive (=0)jor NULT. ACTVFLAG will have NULL value prior to

constraint screening in ACTCON

SCNUM Integer > 0 See Remark 11
or NULL

, integer > 0
SP~uNor NUJLL iSee Remark i2

Integer > 0 Subscript number for SAERO discipline

or NULL constraints oL types 3, 4, 5, 6, 9, 10, 11, and 12

IColum;n number in the matrix of
Integer> 0I S PCL Ior NULL pseudodisplacements/accelerations for static
or_ NUL _ aeroelastic constraints ot types 9, 10, and 12

ET YPE Mxt (8) or Element type used for stress/strain and
_ NULL thickness constraints

I ID integer or Element identification number
____ NIULL__ __ _ _ _

LAYERUM jInteger or
LAYERNUM NULL Element layer information (See Remark 14)

Integer > 0 See Remark 13
or NULL

445

NAME TYPE/KEY DESCRIPTION

VSCON Real vector(6) Allowables for stress/strain constraints

SENSPRM1 Real

SENSPRM2 Real General values useful for sensitivity

SENSPP.M3 Real calculations (see Remark 10)

SENSPRM4 Text (8)

Pointer to the GRADIENT entity containing

PRINTKEY Inte the gradient of the constraint with respect to
K Integer the global variables

1 = 0 if no gradient was stored (see Remark 15)

Created By: See Note below.

Notes:
1. NULL values imply the value is supplied with the database default null

value. These are typically bit patterns which represent illegal values of their
respective data types. See RENULi utility documentation. For this relation,
zero is sometimes used in place of the database NULL value.

2. The constraint types are:
0 = Objective function
1 = Minimum thickness constraint
2 = Maximum thickness constraint
3 = Displacement constraint
4 = Stress constraint
5 = Strain constraint on Ex principal strain
6 = Strain constraint on Ey principal strain
7 = Frequency constraint
8 = Flutter constraint
9 = Lift Effectiveness Constraint
10 = Aileron Effectiveness Constraint
11 = Trim Parameter Limit Value Constraint (DCON TRM)
12 = Stability Derivative Constraint (DCONSCF)
13 = Laminate Composition Constraint (DCONLAM)
14 = Laminate Minimum Gauge Constraint (DCONLMN)
15 = Ply Minimum Gauge Constraint (DCONPMN)

3. Constraints of Types 1 and 2 are evaluated in the TCEVAL module. The sen-
sitivities are evaluated in the MAKDFV module.

4. Constraints of Type 3 are evaluated in the DCEVAL module. The sensitivi-
ties are evaluated in the MAKDFU module.

5. Constraints of Type 4, 5 and 6 are evaluated in the SCEVAL module. The sen-
sitivities are evaluated in the MAKDFU module.

6. Constraints of Type 7 are evaluated in the FCEVAL module. The sensitivities
are evaluated in the FREQSENS module.

7. Constraints of Type 8 are evaluated in the FLUTIRAN module. The sensitivi-
ties are evaluated in the FLUTSENS module.

8. Constraints of Types 9, 10, 11, and 12 are evaluated in the SAERO module.
The sensitivities of 9, 10, and 12 are evaluated in the AEROEFFS and those
of 11 in the AEROSENS module.

446

9. Constraints of Types 13, 14, and 15 are evaluated in the LAMINCON module.
The sensitivities are evaluated in the LAMINSNS module.

10. The SENSPRM1, 2, 3, and 4 attributes contain values useful in sensitivity
analysis for certain constraint types.
Type 1 - SENSPRM1 contains the minimum gauge used to normalize

the constraint.
Type 2 - SENSPRM2 contains the maximum gauge used to normalize

the constraint.
Type 7 - SENSPRM1 contains the current value of the associated

eigenvalue.
Type 9 - SENSPRM1 contains the current value of the associated rigid

lift curve slope. SENSPRM2 contains the value of the associ-
ated required ratio.

Type 10 - SENSPRM1 contains the current value of the associated di-
mensional flexible rolling moment slope due to aileron deflec-
tion.
SENSPRM2 contains the current value of the associated flex-
ible rolling moment slope due to roll rate.
SENSPRM3 contains the required roll effectiveness and other
constants:

b * 180
SENSPRM3 =

2ERQ

where
b = reference span
2eRQ = required aileron effectiveness

SENSPRM4 contains the name of the rolling control surface
whose effectiveness is constrained.

Type 11 - SENSPRM1 contains the required value of the trim parame-
ter.
SENSPRM4 contains the name of the trim parameter whose
derivative is constrained.

Type 12 - SENSPRM1 contains the required dimensional value of the
stability derivative.
SENSPRM2 contains the real equivalent of the degree of free-
dom number (1, 2, ... or 6) representing the DOF associated
with the derivative.
SENSPRM4 contains the name of the trim parameter or accel-
eration whose derivative is constrained.

Type 13 - SENSPRM1 contains the required upper or lower bound per-
centage of ply to laminate thickness.
SENSPRM2 contains the current ply thickness
SENSPRM3 contains the current laminate thickness

Type 14 - SENSPRM1 contains the minimum thickness value.
SENSPRM3 contains the current laminate thickness

Type 15 - SENSPRM1 contains the minimum thickness value.
SENSPRM2 contains the current ply thickness

11. The SCNUM attribute contains general information to allow computation of
the sensitivities. These data are the following:
Type 1 - =0 if constraint does not appear on a DCONTHK/2 entry

447

= I if it does appear on DCONTHI/2
Type 2 - NULL
Type 3 - Subcase number of discipline generating the constraint
Type 4 - Subcase number of discipline generating the constraint
Type 5 - Subcase number of discipline generating the constraint
Type 6 - Subcase number of discipline generating the constraint
Type 7 - Mode number associated twith the constraint
Type 8 - Subcase number generating the constraint
Type 9 - Subcase number generating the constraint
Type 10 - Subcase number generating the constraint
Type 11 - Subcase number generating the constraint
qType 12 - Subcase number generating the constraint
Type 13- NULL
Type 14- NULL
Type 15 - NULL

12. The PNUM attribute contains general pointer information to allow computa-
tion of the sensitivities. The pointer data are the following:
Type 1 - PMINT matrix column number associated with the constraint
Type 2 - PMAXT matrix column number associated with the constraint
Type 3 - Displacement constraint number which points into the

DCENT entity
Type 4 - Row in GLBSIG where first stress component for the element

is stored
Type 5 - Row in GLBSIG where first stress component for the element

is stored
Type 6 - Row in GLBSIG where first stress component for the element

is stored
"Type 7 - NULL
Type 8 - Count number in a running count of flutter roots. Matches

the PNUM attribute in CLAMBDA
Type 9 - NULL
Type 10 - NULL
Type 11- NUJL
Type 12- NULL
Type 13 - Defines the laminate

= 0 if the lamanate thickness comprises all layers
= LAMSET id of PLYLIST data if the lamanate

thickness comprises a subset of layers
Type 14 - = 0
Type 15- = 0

13. The SCON attribute contains general information to allow computation of the
sensitivities. These data are the following:
Type 1- NULL
Type 2 - NULL
Type 3 - NULL
Type 4 - = 1 for Von Mises Stress

= 2 for Tsai Wu Stress
Type 5 - = +3 Principal strain constraint using tension allowable

- 3 Principal strain constraint using compression allowable
= +4 Fiber/transverse strain constraint using tension allow-
able

4
S~448

= -4 Fiber/transverse strain constraint using compression al-
lowable

Type 6 - = +3 Principal strain constraint using tension allowable
= - 3 Principal strain constraint using compression allowable
= +4 Fiber/transverse strain constraint using tension allow-
able
= - 4 Fiber/transverse strain constr int using compression al-
lowable

Type 7 - UPPER (=1) or LOWER (=-1) bound flag
Type 8 - A combined number noting the velocity, mode and subcase

number generating the constraint of the form:
xxxyyyzzz

where xxx = subcase number
yyy = mode number
zzz = velocity number

each are limited to 999. This value is only useful in that sort-
ing by SCON sorts the constraints by velocity within each
mode within each subcase.

Type 9 - UPPER (=1) or LOWER (=-I) bound flag
Type 10 - UPPER (=1) or LOWER (=-1) bound flag
Type 11 - UPPER (=1) or LOWER (=-1) bound flag
Type 12 - UPPER (=1) or LOWER (=-1) bound flag
Type 13 - UPPER (=1) or LOWER (=-1) bound flag
Type 14 - =0
Type 15 - =0

14. The LAYERNUM is only set if the gradient is stored. This
Types 1, 4, 5, anfi6tains the layer number (if applicable) or 0
Types 13, and 16-> 0, contains the layer number of the ply

if< 0, contains the PLYLIST id of the set of layers in the ply
if > 0, contains the layer number of the ply

15. The PRINTKEY is only set if the gradient is stored. This is done only when
the requested objective and/or constraint fradient is selected in a print of
punch request.

449

Entity: CONVERT

Entity Type: Relation

Description: Contains the conversion fa r-s for various physical quantiti-- as input from the
Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

QUANTITY Test (8) Character string identifying the physical
quantity whose units are to be converted

FACTOR Real Conversion factor to be applied

Created By: Module IFP

Notes:
1. Refer to CONVERT Bulk Data entry for the valid QUANTITY values.

Entity: CORDIC

Entity Type: Relation

Description: Contains the coordinate system definition for a cylindrical coordinate system as
input from the Bulk Data file.

Relation Attributes.

NAME Type/KEY DESCRIPTION

CID1 Integer > 0 Coordinate system identification number
GRIDI r > 0 The grid point identification number whi.h

!Integer locates the system origin

GRID2 Integer > 0 The grid point identification number which
_defines the system z-axis

GRID3 Integer > 0 The grid point identification number which
_RID3__ Integer_ j > defines a point lying in the system xz-plane

Created By: Module IFP

Notes:
1. This relation is used by the MKTMAT module to build the CSTM relation.

450

e Entity: CORD2C

Entity Type: Relation

Description: Contains the coordinate system definition for a cylindrical coordinate system as
input from the Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

CT D! Integer > 0 Coordinate system identification number

Coordinate system identification number of
RID Integer 2=0 system in which the coordinates of the defining

locations are given

Al, A2, A3 Real Coordinates of system origin

Bi, B2, B3 Real Coordinates defining z-axis

Cl, C2, C3 Real Coordinates defining xz plane

Created By: Module IFP

Notes:
1. This relation is used by the MKTMAT module to build the CSTM relation.

S Entity: CORD1R

Entity Type: Relation

Description: Contains the coordinate system definition for a rectangular coordinate system as
input firom the Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

CID1 Integer > 0 Coordinate system identification number

GRIDI r >0 The grid point identification number which
1Integer locates the system origin

GRID2 Integer > 0 The grid point identification number which
defines the system z-axis

GRI D3 Integer > 0 The grid point identification number which
I dcfines a point lying in the system xz-plane

Created By: Module IFP

Notes:
1. This relation is used by the MKTMAT module to build the CSTM relation.

451

Entity: CORD2E

Entity Type: Relation

Description: Contains the coordinate system definition for a rectangular coordinate system as
input from the Bulk Date. file.

Relation Attributes:

"NAME Type/KEY DESCRIPTION

CIDl Integer > 0 Coordinate system identification number

Coordinate system identification number of
RID Integer -0 system in which the coordinates of the defining

locations are given

Al, A2, A3 Real Coordinates of system origin

B1, B2, B3 Real Coordinates defining z-axis

Cl, C2, C3 Real Coordinates defining xz-plane

Created By: Module IFP

Notes:
1. This relation is used by the MKTMAT module to build the CSTM relation.

Entity: CORD1S 4
Entity Type: Relation

Description: Contains the coordinate system definition for a spherical coordinate system as in-
put from the Bulk Data file,

Relation Attributes:

NAME Type/KEY DESCRIPTION

CIDb Integer > 0 Coordinate system identification number

GRIDI r >0 The grid point identification number which
1Integer locates the system origin

RID2 I > 0 The grid point identification number which
defines the system z-axis

GRIN The grid point identification number which
defines a point lying in the system xz-plane

Crea' d By: Module 1FP

Notes:
1. This relation is used by the MKTMAT module to build the CSTM relation.

452

O Entity: CORD2S

Entity Type: Relation

Description: Contains the coordinate system definition for a spherical coordinate system as in-
put from the Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

CID1 Integer > 0 Coordinate system identification number

Coordinate system identification number of
RID Integer > 0 system in which the coordinates of the defining

locations are given

Al, A2, A3 Real Coordinates of system origin

B1, B2, B3 Real Coordinates definingz-axis

C1, C2, C3 Real Coordinates defining xz-plane

Created By: Module IFP

Notes:
1. This relation is used by the MKTMAT module to build the CSTM relation.

453

Entity: CQDMEM1

Entity Type: Relation

Description: Contains the element connectivity data for the linear isoparametric quadrilateral
membrane element as input from the Builk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

EID Integer > 0, key Element identification numbe'

PIDI Integer > 0 Property identification number of P-
Type tuple

GRIDi, GRID2 Integer > 0 Grid point identification number

GRID3, GRID4 Integer > 0
CID Ž0 Coordinate system v-ed to define

Intege> material axis

THETA ReUL Material orientation angle for
_ _...._ anisotropic materials

TMAX Real Ž 0 Maximun element thicknesi in design

Created By: Module TFP
Notes: 1. The PID refers to a PQDMEM1 tuple. 4

2. This relation is used by the MAKEST module to build the QDMM1EST rela-
tion.

3. Note that the relation contains two attributes CID and THETA to account for
the dual definition of the THETA field on the CQDMEM1 bulk data entry.

45

454

Entity: C00 4 t

Entity Type: Relation

Description: Contains the element connectivity data for the quadrilateral bending element as
input from the Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

EID Integer > 0, key Element identification number
PIDI e >0 Property identification number of P-

1Integer Type tuple

GRIDI, GRID2 Integer > 0 Grid point identification number

GRID3, GRID4 Integer > 0
CIDi Ž0! Coordinate system used to define

material orientation

THETA Real Material orientation angle for
anisotropic materials

OFFSETO Real Offset of element reference plane from
plane of the grid point

S• TMAX Real Ž 0 Maximun laminate thickness in design

THICK1 Real Ž 0 Element thickness at grid point GRID1

THICK2 Real > 0 Element thickness at grid point GRID2

THICK3 Real Ž0 Element thickness at grid point GRID3

THICK4 Real Ž0 Element thickness at grid point GRID4

Created By: Module IFP

Notes:
1. The PID may refer to a PCOMPi or PSHELL tuple.
2. This relation is used by the MAKEST module to build the QUAD4EST rela-

tion.
3. Note that the relation contains two attributes CID and THETA to account for

the dual definition of the THETA field on the CQUAD4 bulk data entry.

455

Entity: CROD

Entity Type: Relation

Description: Contains the element connectivity data for the ROD element as input from the
Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

EID Integer > 0, key Element identification number

Property identification number of a PROD

-pD1 Integer > 0 tuple

GRIDi Integer > 0 Grid point identification number defining
end A

GRID2 Integer > 0 Grid point identification number defining
GRID2__ Integer_>_0 ..end B
TMAX Real > 0 Maximum cross-sectional area in design

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the RODEST relation.

Entity: CSHEAR

Entity Type: Relation

Description: Contains the connectivity data for the shear panel as input from the Bulk Data
file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

EI D Integer > 0, key Element identification number
PID Integer > 0 Property identification number of a

PSHEAR tuple

GRI DI, GRI D2 Integer > 0 Grid point identification numbers

GRID3, GRID4 Integer > 0 defining the element geometry

TMAX Real > 0 Maximum thickness in design

Created By: Module IFP

Notes:
1. This relation is used by the MAKEST module to build the SHEAREST rela-

tion.

456

, Entity: CSTM

Entity Type: Relation

Description: Contains the coordinate transformation matrices for all external coordinate sys-
tems.

Relation Attributes:

NAME Type/KEY DESCRIPTION
Unique coordinate system

ID neger> 0, key identification number

CORDTYPE Integer > 0 The type of coordinate system

Basic coordinates of the systemxo, YO ,z0 Real oiiorigin ,

T1l, T21, T31 Real Elements of the 3 x 3 orthogonal

T12, T22, T32 Real transformation matrix in column
S-.. order

T13, T23, T33 Real

Created By: Module MKTMAT

Notes:
1. Tnis Yelation contains one tuple for each external coordinate system in the

problem.
2. The COIRDTYPE attribute contains a value of:

1 = if the system is rectangular
2 = if the system is cylindrical
3 = if the system is spherical

457

Entity: CTRIA3

Entity Type: Relation

Description: Contains the connectivity dav% for the triangu,.iar shell elmEniet es input from the
Bulk Data file.

Relation Attributes:

NAME - j Type/KEY DESCRIPTION

EID Integer > 0, key Element identification nuimber

PID. Integer > 0 Property tuple identificationPIDIIntge•> 0num~be-r

GRIDW, GRID2 Integer > 0 Grid point idpntification numbers
f- dew~irg th i-lmbntgeornetryGRID3 Integer >0 defining the ,embnto

CID1 IntegIr Coordinate system used to define
the material orientation

THETA Real MateriaI orientation angle forTHETA__ anisotropic materials

OFFSE'ro Real Offset of element reference plan a
I from plane of the grid point

TMAX 0Maximum laminate thicknesses at
aReal >0 ech grid point

THICK1 Real >_0 Element thicknesses at each grid

THICK2 Real >0 , point

THICK3 Real 'a 0

Created By: Module IFP

Notes:
1. The PID may refer to a PCOMPi or PSHRLL tuple.
2. This relation is used by the MAREST module to build the TRIA3EST rela-

tion.
3. Note that the relation contains two attributes CID and YHETAin order to ac-

count for the dual definition of the TH.ETAfield on the CTRIA3 Bulk Data en-
try.

458

Entity: CTPMM

Entity Type: Relation

Description. Contains the connectivity data for the constant strain triangular membrane ele-
ment as input from the Bulk Data file.

Relation Attributes:

NAME Type/KEY DESCRIPTION

T-1 __D Integer > 0, key Element identification number
PID I e >Property identification number of a

Integer> 0 PTAMEEM tuple
GR___ Integer >0

I D I Integer >0Grid identification numbers defining the
GRI D2 integer > 0 geometry

GRID3 integer > 0

Coordinate system used to define the
CDjnt~eger>0 material axis

THETA Re0Material orientation angle for anisotropic
THETA_ _____materials

TMX Real > 0 Maximum thickness in design

Created By: Module !FP

Notes:
1. This relation is used by the MAKEST niodule to build the TRMEMEST rela-

tion.
2. Note that the relation has two attributes CID and THETA to account for the

dual definition of the TIETA field on the CTRY-EM bulk data entry.

Entity: D

Entity Type; Subscripted Matrix

Description: Contains the rigid body transformation matrix relating the displacements of the
solutiou set to those of the support set.

Mastx Form. A variable sized design invariant matri) having one column for each degree of
freedom in the suppor-t set and one row for each degree of freedom in the solution
set for the current boundary condition.

Created By: MAPOL

Notes:
1. This matrix is design invariant and is, therefore, computed only once for each

unrestrained boundary condition.

459

Entity: DCENT

Entity Type: Unstructured

Description: Contains collected displacement constraint information.

Record:
1. ID's of the NDSET displacement constraint sets.
i. Contains data for the (i-1)th constraint set. The information on each of these

record is:

WORD # VARIABLE DESCRIPTION

1 SETID From DCONDSP

2 NDCID Number of constraints in this set

j DCID- Displacement constraint ID

j+1 CTYPE Constraint type (see Remark 4)

j+2 ALLOWD Allowable

j+3 NTERMS Number of terms in the constraint

k INTID Internal ID of constraint component

k+1 AJ Factor on component

Notes:
1. There are NTERMS nested blocks of k data for each block of j data.
2. There are NDCID nested blocks ofj data for each record.
3. There are NSET+1 records in the entity.
4. The constraint type is either UPPER bound (CTYPE=1) or LOWER bound

(CTYPE=-l).

Entity: DCONALE

Entity Type: Relation

Description: Contains the roll effectiveness constraint definition as input from the Bulk Data
file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION
SETID Integer > 0 Aerodynamic set identification of the imposed

constraint

LABEL Text (8) Control surface label

CTYPE Text (8) Constraint type, either UPPER or LOWER

AEREQ Real The required roll effectiveness

Created By: Module IFP

•04

,Entity: DCONCLA

Entity Type: Relation

Description: Contains the flexible lift curve slope constraint definition as input from the Bulk
Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer Aerodynamic set identification of the imposed
constraint

CTYPE Text (8) Constraint type, either UPPER or LOWER

CLAREQ Real The required flexible lift curve slope ratio

Created By: Module IFP

Entity: DCONDSP

Entity Type: Relation

Description: Contains the design displacement constraint as input from the Bulk Data file.
Relation Attributes:

l NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Constraint set identification number

DCID Integer > 0 Constraint identification number

CTYPE Text (8) Constraint type, either UPPER or
CTYEText_(8)_LOWER

ALLOWD Real Allowable displacement

LABEL Text (8) User defined label
GRIDI I > 0 Grid point id to which constraint is

IInteger applied

COMPNTI Integer 1,2,3,4,5 or 6 Component of GRIDI

AJ Real Constraint coefficient

Created By: Module IFP

4
461

Entity: DCONEP

Entity Type: Relation

Description: Contains the principle strain constraint definition by specifying the identification
niumbers of constrained elements.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Strain constraint set identification number

ST Real Principle strain limit in tension

SC Real Principle strain limit in compression

ss Real Principle strain limit in shear

ETYPE Text (8) Element type

LAYRNUM Integer Layer number of a composite element

EID Integer > 0 Element identification number

Created By: Module IFP

Entity: DCONEPM

Entity Type: Relation

Description: Contains the principle strain constraint definition by specifying the material iden-
tification numbers.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Strain constraint st identification number

ST Real Principle strain limit in tension

SC Real Principle strain limit in compression

SS Real Principle strain limit in shear

MID Integer > 0 Material identification number

Created By: Module IFP

462

. Entity: DCONEPP

Entity Type: Relation

Description: Contains the principle strain constraint definition by specifying the element prop-
erty identification numbers

Relation Attributes:

NAME TYPI/KEY DESCRIPTION

SETID Integer > 0 Strain constraint set identification number

ST Real Principle strain limit in tension

SC Real Principle strain limit in compression

SS Real Principle strain limit in shear

PTYPE Text (8) Property type

LAYRNUM Integer Layer number of a composite element

PID Integer > 0 Property identification number

Created By: Module IFP

Entity: DCONFLT. Entity Type: Relation

Description: Contains the definition of the flutter constraint as input from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Set identification number

GFACT Real > 0.0 Constraint definition scaling factor

Text string identifying the velocity type for the

VTYPE Text(8) table
= TRUE for true velocities
= EQUIV for equivalent velocities

VI Real > 0.0 Velocity value

GAMAI Real Damping value

Created By: Module IFP

Notes:
1. The relation contains one tuple for each velocity, damping pair given in the

Bulk Data.

463

Entity: DCONFRQ

Entity Type: Relation

Description: Contains the frequency constraint definition as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Aerodynamic set identification of the imposed
constraint

MODEI r >0 Mode number of the frequency to be
constrained

CTYPE Text (8) Constraint type either UPPER or LOWER

FRQALL Real > 0.0 The frequency constraint value

Created By: Module IFP

Entity: DCONFT

Entity Type: Relation

Description: Contains the fiber/transverse strain constraint definition by specifying the identi-
fication numbers of constrained elements.

Relation Attributes: 4
NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 3train constraint set identification number

EFT Real > 0.j Tensile strain lim~it in the fiber direction

EFC Real Compressive strain limit in the fiber
__direction

Tensile strain limit in the transverseETT Real > 0.0 direction

ETC Rea, Compressive Rtrain limit in the transverse
direction

ETYPE Text (8) Element type

LAYRNUM Integer Layer number of a composite element

EID Integer > 0 Element identification number

Created By: Module IFP

464

. Entity: DCONFTM

Entity Type: Relation

Description: Contains the fiber/transverse strain constraint definition by specifying the mate-
rial identification numbers.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Strain constraint set identification number

EFT Real > 0.0 Tensile strain limit in the fiber direction

EFC Real Compressive strain limit in the fiber
__CRea__ direction

Tensile strain limit in the transverseETT Real > 0.0dieto
direction

ETC Real Compressive strain limit in in the
transverse direction

MID Integer > 0 Material identification number

Created By: Module IFP

. Entity: DCONFTP

Entity Type: Relation

Description: Contains the fiber/transverse strain constraint definition by specifying the ele-
ment property identification numbers.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Strain constraint set identification number

EFT Real > 0.0 Tensile strain limit in the fiber direction

EFC Real Compressive strain limit in the fiber
direction

Tensile strain limit in the transverse
ETT Real > 0.0 direction

ETC Real Compressive strain limit in in the

transverse direction

PTYPE Text(8) Property type

LAYRNUM Integer Layer number of a composite element

PID Integer > 0 Property identification number

. Created By: Module IFP

465

Entity: DCONLAM 4
Entity Type: Relation

Description: Contains the laminate composition constraints as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

CTYPE Text (8) Constraint type, either UPPER or
__TY ___ Text__(8LOWER

PERCENT Real Percent allowable ply thickness

PLYNUM Integer > 0 or- 1 Ply number or -1 if PLYSET is used

FLYLIST identification number or -1 if
PLYSET Integer > 0 or -1 PL tT :udPLYNIDN iau 5,-•d

LA.MCHAR Text (8) The string ALL or blank if LAMSET is
used

PLYLIST identification number or 0 if
LANSET Integer =0 LAMCHAR=ALL

SID Integer > 0 ELEMLIST set identification number

Created By: Module IFP

4

466

, Entity: DCONLIST

Entity Type: Relation

Description: Contains the definition of the constraint lists as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

CTYPE Text (8) Constraint type identifier

NRFAC Real Retention factor for minimum number of
constraints

EPS Real Lower bound value for constraint selectionby value

Created By: Module IFP

Entity: DCONLMN

Entity Type: Relation

Description: Contains the laminate minimum gauge constraints as input from the Bulk Data

Relation
Attributes:

NAME TYPE/KEY DESCRIPTION

MINTHK Real > 0.0 Allowable minimum gauge

LAMCHAR Text (8) The string ALL or blank if LAMSET is
used

PLYLIST identification number or 0 ifLAMS Er Integer =0 L0C7A=
LAMCHAR=-ALL

SID Integer > 0 ELEMLIST set identification number

If 1, SIDEONLY indicates that this
SIDEONLY Integer = 1 or NULL constraint is redundant with a side

constraint.

Created By: Module IFP

467

Entity: DCOIPMN

Entity Type: Relation

Description: Contains the ply minimum gauge constraints as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

MINTHK Real > 0.0 Allowable minimum gauge

PLYNUM Integer > 0 or -1 Ply number or -1 if PLYSET is used

PLYLIST identification number or -1 if
PLYSET Integer > 0 or -1 PYU suePLYNUM is used

SID Integer > 0 ELEMLIST set identification number

If 1, SIDEONLY indicates that this

SI DEONLY Integer = 1 or NULL constraint is redundant with a side
constraint.

Created By: Module IFP

Entity: DCONSCF

Entity Type: Relation

Description: Contains the definition of a constraint on the flexible stability derivative at the
reference grid point associated with the force or moment due to a trim parameter
or control surface deflection of the form.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Constraint set identification

ACCLAB Text (8) Structural acceleration label

Constrained control surface label or
PRMLAB Text (8) aeroelastic trim parameter

CTYPE Text (8) Constraint type

PRMREQ Real Stability coefficient bounds

UNITS Text (8) Stability coefficient units

Created By: Module IFP

468

. Entity: DCONTH2

Entity Type: Relation
Description: Contains the list of layers of composite elements for which thickness constraints

are always to be retained in optimization with shape function design variable
linking as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Element type. One of the following:

ETYPE Text (8) QUAD4 QDMEMI
TRIA3 TRMEM

PLYNUM Integer > 0
_______ Integor - > Ply number or -1 indicating PLYSET is used

PLYSET Integer > 0 PLYLIST set identification or -1 indicating
I or -1 PLYNUM is used

EID Integer > 0 Element identification number

Created By: Module IFP

469

Entity: .ICONTHK

Entity Type: Relation

Description: Convreins the list of elements for which thickness constraints are always to be re-
tained in optimization with shape function design variable linking as input from
the Bulk Data file.

Relation Attributes:

NAME ITYPEIKEY DESCRIPTION

Element type. One oF the following:
BAR QUAD4

ETYPE '.xt (8) ELAS ROD
I MAS SHE-AR
QDMEMi TRIA3
TRMEM

_

EID Integer > 0 Element ,dentification number

Created By: Module IFP

Entity: DCONTRM

Entity Type: Relation

Description: Contains the definitions of a trim parameter constraint.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Constraint set identification

PRMLAB Text (8) Constrained control surface label or
aeroel.stic trim parameter

CTYPE Text (8) Constaiiit type

-_Rl_(R__Q Real Trim paramet,-i bound

Created By: Modumle IFP

470

Entity: DCONTW

Entity T)ye: Relation

Description: Contains the Tsai-WNu strtss constraint definitior, by specifying the identification
.-. nbers of constrained eements.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Stress constraint, set identification

XT Real > 0.0 Tensile stress limit in the longitudinal
direction

xC Real Compressive stress limit in the
longitudinal direction

YT Real > 0.0 Tensile stress limit in the transverse
direction

YC Real Compressive stress limit in the transverse
direction

SS Real > 0.0 Shear s.rass limit for in-plane stress

F12 fReal._]_ Tsai-Wa interaction term

ETYPE Text (8) Eleny'•i• type
LAYRNUM Integer Layer number of a composite element

EID Tnteger > 0 Element identification number

Created By: Module IFP

471

Entity: DCONTWM

Entity Type: Relation

Description: Contains the Tsai-Wu xstress constraint definitioi- by specifying the material iden-
tification numbers.

Relation Att.ibutes:

NAME TYPEIKEY DESCRIP tION

SETID Integer > 0 Stress constraint set identification

XTensile stress limit in th, longitudinal
XT Real >0.0dieto_____direction

XC Real Compressive stress limit in the
_C _ Real_ _ longitudinal direction

YT Real > 0.0 'Tensile stress limit in the transverse
direction

Real Compressive stress limit in the transverseI
direction

ss Real > 0.0 Shear stress limit for in-plane stress

F12 Real Tsai-Wu interaction term

MID Iinteger > 0 Material identification number

Created By: Module IFP

472

Entity: DCONTWP

Entity Type: Relation

Description: Contains the Tsai-Wu stress constraint definition by specifying the element prop-
erty identification numbers.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Stress constraint set identification

XT Real > 0.0 Tensile stress limit in the longitudinal
direction

xC Real Compressive stress limit in the
longitudinal direction

YT Real > 0.0 Tensile stress limit in the transverse
direction

YC Real Compressive stress limit in the transverse
direction

SS Real > 0.0 Shear stress limit for in-plane stress

F12 Real Tsai-Wu interaction term

PTYPE Text (8) Property type

LAYRNUM Integer Layer number of a composite element

PID . Integer > 0 Property identification number

Created By: Module IFP

473

Entity: DCONVM

Entity Type: Relation

Description: Contains the Von-Mises stress constraint definition by specifying the identifica-
tion numbers of constrained elements.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Stress constraint set identification number

ST Real Stress limit in tension

Sc Real Stress limit in compression

SS Real Stress limit in shear

ETYPE Text (8) Element type

LAYRNUM Integer Layer number of a composite element

EID Integer > 0 Element identification number

Created By: Module IFP

Entity: DCONVMM

Entity Type: Relation

Description: Contains ths Von-Mises stress constraint definition by specifying the material
identification numbers.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Stress constraint set identification number

ST Real Stress limit in tension

SC Real Stress limit in compression

SS Real Stress limit in shear

MID Integer > 0 Material identification number

Created By: Module HFP

474

* Entity: DCONVMP

Entity Type: Relation

Description: Contains the Von-Mises stress constraint definition by specifying the element
property identification numbers.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Stress constraint set identification number

ST Real Stress limit in tension

SC Real Stress limit in compression

Ss Real Stress limit in shear

PTYPE Text (8) Property type

LAYRNUM Integer Layer number of a composite element

PI D Integer > 0 Property identification number

Created By: Module IFP

Entity: DDELDV

Entity Type: Matrix

Description: Matrix of sensitivities of the trim angles to changes ix, the design variables.

Matrix Form: The number of rows is equal to the number of trim parameters while the number
of columns is equal to the number of active flight conditions times the number of
design variables.

Created By: Module AEROSENS

Notes:
1. DDELDV is needed only when the design task includes aero elastic trim and

the flight conditions have been determined to be active by module ABOUND.
2. DDELDV is determined through the solution of the equation:

[S] [DZELDV] [DRHs]

Entity: DELB

Entity Type: Matrix

Description: Matrix containing trim parameters used as initial conditions in the nuclear blast
response calculations.

Matrix Form: Real matrix with three rows and one column.

Created By: MAPOL

475

Entity: DELM4

Entity Type: Matrix

Description: Matrix containing trim that precedes a nuclear blast response calculation.

Matrix Form: Rectangular matrix with two rows and three columns.

Created By: MAPOL

Entity: DELTA

Entity Type: Subscripted Matrix

Description: A vector of trim parameters for each flight condition.

Matrix Form: The number of rows is dependent on the type of trim analysis being performed.
The number of columns is equal to the number of load conditions being applied
for the current Mach number and boundary condition.

Created By: Module SAERO

Notes:
1. For symmetric analyses, there are two to four rows in DELTA, depending on

the value of TRMTYP on the TRIM Bulk Data entry.

Entity: DESELM

Entity Type: Relation

Description: Contains design variable connection information uniquely associating one design
variable to one element.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

DVID Integer > 0 Design variable id

EIDM Integer > 0 Element identification

ETYPE1 Text (8) Element type

VMIN Real Minimum value of design variable

VMAX Real Maximum value of design variable

VALUE Real Initial value of design variable

LAYERNUM Integer Layer of a composite material

LABEL Text (8) User label

Created By: Module IFP

Notes:
1. The LAYERNUM entry identifies the layer on the PCOMP entry for the ele-

ment defined by EID1 and ETYPEL.

476

. Entity: DESHIST

Entity Type: Relation

Description: Contains information on the results of major iterations in the design task.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

NITER Integer > 0 Iteration number for optimization

OBJ Real Objective function value

NFUNC Integer Ž0 Number of function evaluations in the current
iteration

NGRAD Integer >: 0 Number of gradient evaluations in the current
t 0 iterations

NCON Integer > 0 Number of constraints

NAC Integer > 0 Number of active constraints

NVC Integer _ 0 Number of violated constraints

NLBS Integer _ 0 Number of active lower bound side constraints

NUBS Integer > 0 Number of active upper bound side constraints

CONVRGD IntegerŽ 0 Convergence flag

Created By: Module DESIGN

Notes:
1. The CONVRGD parameter has the following definition:

CONVRGD MEANING
0 Design has not converged
1 Design has converged

477

Entity: DESLINK

Entity Type: Relation

Description: Contains the layer thicknesses of undesigned layers of designed composite ele-
ments.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

Element type. One of the following:
BAR QDMEM1

ETYPE Text (8) ELAS QUAD4
ROD SHEAR
TRIA. TRMEM

LAYRNUM Integer = 0 Layer number, = 0 if noncomposite element
DVID I > 0 Global design variable connected to this

DInteger EID/LAYER

PREF Real Design Variable Linking Factor (1.0 or SHAPE
I_ I Coefficient)

Created By: MAKEST
Notes: 1. There is one entry for each local design variable for each global design vari-

able linked to it. Basically, this is a relational form of the [PTRANS] matrix.

478

.Entity: DESVARP

Entity Type: Relation

Description: Contains the properties of each physically linked design variable.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

DVI D Integer > 0 Design variable id

LINKID Integer > 0 ELIST or PLIST identification number
VMIN Real Minimum value of the design variable

VMAX Real Maximum value of the design wriable

VALUE Real Initial value of the design variable

LAYERNUM Integer Layer number for a composite element

LAYRLST Integer PLYLIST identification number for layer list

LABEL Text (8) User label to describe the design

Created By: Module IFP

Notes:
1. The LAYERNUM entry identifies the single ply of a composite element. LAY-

ERNUM = -1 if LAYRLST is used.
2. The LAYRLST entry identifies the list of plies linked to the design variable.

LAYRLST = -1 if LAYRNUM is used.

0
479

Entity: DESVARS

Entity Type: Relation

Description: Contains the properties of shape functi) linked design variable.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

DVID Integer > 0 Design variable id

SHAPEID Integer > 0 SHAPE set identification number

VMIN Real Minimum value of the design variable

VMA Real Maximum value of the design variable

VALUE Real nitial value of the design variable

LAYERNUM Integer Layer number for a composite element

LAYRLST Integer PLYLIST identification number for layer list

LABEL Text (8) User label

Created By: Module IFP

Notes:
1. The LAYERNUM entry identifies the single ply of a composite element. LAY-

EP-NUM = -1 if LAYRLST is used.
2. The LAYRLST entry identifies the list of plies linked to the design variable.

LAYRLST = -1 if LAYRNUM is used.

480

, Entity: DFDU

Entity Type: Matrix

Description: See Notes.

Matrix Form: A variable sized matrix having one row for each structural degree of freedom and
one column for each currently active constraint.

The order of the DFDU columns is as follows for each active boundary condition:
(A) The sensitivities of active displacement constraints for each active load

condition.
(B) The sensitivities of each active stress or strain constraint in each active

load condition.

Created By: Module MAKDFU or MAPOL

Notes:
1. For the Gradient Method, contains the sensitivities of ýhe currently active

constraints to the global displacements for those constraints that are func-
tions of the displacements.

2. For the Virtual Load Method, contains the sum of the sensitivity of the design
dependent loads and the product of the design sensitivity stiffness matrix and
the active displacement vectors.

3. The MAPOL sequence supports the following partitions of the DFPU matrix
(see Theoretical Manual for the explicity formation of these submatrices):

* DFDTJ - [Ar
DFDTJZ -4 Dd DF1rF]

Entity: DFDUF

Entity Type: Matrix

Description: A partition of matrix DFDUN (see DFDU).

Entity: DFDU

Entity Type: Matrix

Description: A partition of matrix DFDUN (see DFDU).

481

Entity: DKUG

Entity Type: Matrix

Description: The product of the design sensitivity matrices and the active displacement vec-
tors.

Matrix Form: The number of columns is equal to NAC, the number of active subcases times
NDV, the number of design variables. The number of rows is equal to the number
of terms in the g-set.

Created By: MAKDVU

Notes:
1. The sensitivity to the first design variable for all the active subcases occupies

the first NAC columns. This is followed by columns for each of the remaining
design variables turn.

2. The negative of the product is created in order to simplify later matrix opera-
tions.

Entity: DKVI

Entity Type: Unstructured

Description: Contains the stiffness design sensitivity matrices.

Entity Structure:

Record:
1. Contains all of a portion of the stiffness design sensitivity matrix for a given

design variable.

Created By: Module EMA1

Notes:
1. Relation GMKCT contains connectivity and KCODE information which de-

fines how the matrices are stored.
2. The sensitivity matrices are stored in the same precision as the KGG matrix.
3. The INFO array contains information on the generation of the mass matrix.

INFO(1l) = 1 Generate the global mass matrix in the final analysis
= 0 Don't generate the global mass matrix

INFO(12) = 1 Generate the global mass matrix for the optimization.

482

0Entity: DK1V

Entity Type: Matrix

Description: An intermediate matrix in the calculation of the sensitivities of static aeroelastic
displacements.

Matrix Form: Rectangular real matrix with the number of rows equal to the number of a-set de-
grees and the number of columns equal to the number of active displacement vec-
tors times the number of design variables.

Created By: MAPOL

Notes:
1. This matrix is the solution to:

[Xl j [:',tV] = [MD,_

Entity: DLAGS

Entity Type: Relation

Description: Contains loading information for a dynamics load set as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

DSID Integer > 0 DLAGS set identification number

LSID Integer > 0 Static load set id

TAU Real Time delay value

PHASE Real Phase lag value

Created By: Module IFP

0
483

Entity: DLOAD

Entity Type: Relation

Description: Contains dynamic loads information as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SI D Integer > 0 Load set identification number

SCAL Real Overall scale factor

SCAUl Real Scale factor for this tuple

ID of the associated TLOADi or RLOADi set
LOADI jInteger > 0 o hi ulfor this tuple

Created By: Module IFP

Notes:
1. The relation is used in the transient response and/or the frequency response

module.

Entity: DLONLY

Entity Type: Relation

Description: Contains loads information for dynamic response as input from the Bulk Data
file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

DSID Integer > 0 DLONLY set identification number

POINT Integer > 0 Grid, scalar or e-.tra point ID

COMP Integer > 0 Component number

AVAL Real Load value

Created By: Module IF?

Notes:
1. Subroutine PREDOL processes DLONLY data and write them to the UD-

LOLY entity.
2. COMP is 1-6 for grid points and zero for extra or scalar points.

484

O Entity: DMAG

Entity Type: Matrix

Description: Matrix product of mass design sensitiv4ty matrices and active acceleration vec-
tors.

Matrix Form: The number of columns is equal to NAC, the 'mnber of active subcases, times
NDV, the number of design variabhos. Tht• wimzer of rows is equal to the number
g-set degrees of freedom.

Created By: MAKDVU

Entity: DMIG

Entity T•rpe: Relation

Description: Contains the direct matrix input data for structural rnatrice•s as defined in the
Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

NAME Text 8 Matrix entity name

PREC Text 4 Matrix precision

FOPM Text 8 Matrix form

GCOL Integer External point identification of column index

CCo0 _ Integer Grid component number of column index

GROW Integer External point id of row index

CROW Integer Grid point component of row index

XiJ Real Real Dart of matrix term

YIJ J Real Imaginary part of matrix term

Created By: Module IFP

485

Entity: DMU

Entity Type: Matrix

Description. The reduced mass sensitivity matrix used in the calculation of sensitivities of dis-
placements when there are unrestrained degrees of freedom.

Matrix Form: The number of row3 is equal t0 the number of SUPPORT degrees of freedom and
the number of columns is equal to the number of columns in DMUG.

Created By: MAPOL

Notes:
1. This matrix is computed from:

[r r =[D] T[Mr=] + [LUR]

Entity: DMILM

Entity Type: Matrix

Description: A partition of the DMUF matrix (see DMUG).

Entity: DMUF

Entity Type: Matrix

Description: A partition of the DMU matrix (see DMUG).

4

486

,Entity: DMtUG

Entity Type: Matrix

Description: Contains the product of the mass design sensitivity matrices and the active accel-
eration vectors.

Matrix Form: The number of columns is equal to NAC, the number of active subeases times
NDV, the number of design variables. The number of rows is equal to the number
of degrees of freedom in the g-set.

Created By: ModAe M(LkKDVU

Notes:
1. T•his matrix is created only when there are unrestrained degrees of freedom.
2. The sensitivity to the first design variable for all the active subcases occupies

the first NAC columns. This is followed by columns for each of the remaining
design variables in turn.

3. The negative of the product is created in order to simplify the later matrix op-
erations.

4. The MAPOL sequence supports the partitions of the DMUG matrix (see the
Theoretical Manual for the explicity formation of these submatrices:)

m•U --* INr

* Generated for Guyan reduction only.

Entity: DMUL

Entity Type: Matrix

Description: A partition of the DMUA matrix (see DMUG).

Entity: DMUN

Entity Type: Matrix

Desc, ,;tionv A partition of the DMUG matrix (see DMUG).

Entity: DMUO

Entity Type: Matrix

Description: A partition of the DMUF matrix (see DMUG).

487

Entity: DMUR

Entity Type: Matrix

Description: A partition of the DMUA matrix (see DMUG).

Entity: DMVI

Entity Type: Unstructured

Description: Contains the mass design sensitivity matrices.

Entity Structure:

Record:
i. Contains all or a portion of the mass design sensitivity matrix for a given de-

sign variable.

Created By: Module EMA1

Notes:
1. Relation GMMCT contains connectivity and MCODE information which de-

fines how the matrices are stored.
2. The sensitivity matrices are stored in the same precision as the MGG matrix.

Entity: DPAV

Entity '~pe: Matrix

Dewniption: Partition of the DPFV matrix (see DPGV).

Entity: DPFV

Entity Type: Matrix

Description: Partition of the DPNV matrix (see DPGV).

488

.Entity: DPGRVI

Entity Type: Matrix

Description: Contains the gravity loads sensitivities for each gravity load set referenced in so-
lution control.

Matrix Form: A variable-sized matrix having one row for each structural degree of freedom and
one column for each gravity load condition for each design variable including the
zeroth design variable: The order of the matrix column is:
(A) The NGRAV columns for each gravity load set for the zeroth design vari-

able in load set id order.
(B) The NGRAV columns for each gravity load set for the first design variable

in load set id order, etc.

Created By: LODGEN

Notes:
1. This matrix is empty if no gravity loads are referenced in solution control or

in a LOAD Bulk Data entry.

Entity: DPGV

Entity Type: Matrix

Description: See Notes.

Matrix Form: Real rectangular matrix with one row for each g-set degree of freedom. The num-
ber of columns is equal to the number of active subcases times the number of de-
sign variables.

Created By: MAPOL or MAKDFU

Notes:
1. For the Gradient Method, contains the right-hand sides for the sensitivity cal-

culations. If there are design dependent loads, DPGV is the sum of DPVJ and
DKUG. If there are no design dependent loads, DPGV is equivalent to
DKUG.

2. For the Virtual Load Method, contains the sensitivities of the currently active
constraints to the global displacements.

3. The MAPOL sequence supports the following partitions of the DPVG matrix
(see the Theoretical Manual for the explicit formation of these matrices):

DPGV -4 (

DPNV -- > 1W

DPFV DPA~V]
[DPRV 1

DPAV - Z LPLV
* Generated for the Guyan reduction only.

489

Entity: DPLV3

Entity Type: Matrix

Description: Partition of the DPAV matrix (see DPGV).

Entity: DPNV

Entity Type: Matrix

Description: Partition of the DPGV matrix (see DPGV).

Entity: DPOV

Entity Type: Matrix

Description: Partition of the DPFV matrix (see DPGV).

Entity: DPRV

Entity Type: Matrix

Description: Partition of the DPFV matrix (see DPGV).

Entity: DPTHVI

Entity Type: Matrix

Description: Contains the thermal loads sensitivities for each thermal load set referenced in
the solution control.

Matrix Form: A variable-sized matrix having one row for each structural degree of freedom and
one column for each thermal load condition for each design variable including the
zeroth design variable. The order of the matrix columns is:
(A) The NTHERM columns for each thermal load set for the zeroth design

variable in load set id order.
(B) The NTHERM columns for each thermal load set for the first design vari-

able in load set id order, etc.

Created By: Module LODGEN

Notes:
1. This matrix is empty if no thermal loads are referenced in solution control.

490

, Entity: DPVJ

Entity Type: Matrix

Description: Contains the sensitivities of the active loads to the design variables.

Matrix Form: A variable-size matrix having one row for each structural degree of freedom and
one column for each active load in the current active boundary condition. The or-
der of the columns is as follows:
(A) The sensitivities of each active load condition in load condition order for

the first design variable.
(B) The sensitivities of each active load condition in load condition order to the

second design variable etc

Created By: Module DDLOAD

Notes:
1. If any = load condition in the current active boundary condition is design

dependent, the full DPVJ matrix must be created so that the DPVJ and the
DKUG matrices are conformable.

2. If no design depend loads exist in the current active boundary condition, the
matrix is empty.

3. The DPVJ is currently built from the appropriate linear combinations of
DPTHVI and DPGRVI columns.

Entity: DPi. Entity Type: Matrix

Description: A load sensitivity matrix used in the calculation of displacement sensitivities
when there are unrestrained degrees of freedom.

Matrix Form: A rectangular matrix with the number of rows equal to the number of degrees of
freedom in the a-set and the number of columns is equal to the product of the
number of columns equal the number of columns in DPGV

Created By: MAPOL

Notes:
1. DP1 is computed by performing a ROWMERGE on matrix entities DMU and

DPGL.

491

Entity: DR-S

Entity Type: Matrix

Description: Sensitivity of the applied loads to the changes in the design variables after they
have been reduced to the support set.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the r-set
while the number of design variables times the number of active load cases as de-
termined by the ABOUND module.

Created By: MAPOL

Notes:
1. If an inertia relief sensitivity analysis is being per formed, DRHS is DPRV

plus the transpose of D times DPLV.
2. If a static aeroelastic sensitivity analysis is being performed, K21 times

DKLV is subtracted from the DRHS defined above.

Entity: DTSLP

Entity Type: Matrix

Description: A matrix used in the nuclear blast calculation to compute the slopes at the aerody-
namic panels given the modal participation factors.

Matrix Form: Areal, rectangular matrix with the number of rows equal to the number of aero-
dynamic panels and the number of columns equal to the number of retained
modes.

Created By: MAPOL

Notes:
1. DTSLP is computed using:

[DTSZP] = [BZSTJA I [PRB]

Entity: DUAD

Entity Type: Matrix

Description: Matrix of sensitivities of the a-set accelerations to changes in the design variables.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the a-set
while the number of columns is equal to the number of active load cases times the
number of design variables.

Created By: MAPOL

Notes:
1. This matrix is formed by merging DURD and DULD.
2. This matrix is constructed only when there is inertia relief and when the load

vectors have been determined to be active by module ABOUND.

4
492

, Entity: DUAV

Entity Type: Matrix

Description: Sensitivity of displacements in the a-set.

Matrix Form: The number of columns is equal to the number of active subcases times the num-
ber of design variables. The number of rows is equal to the number of terms in
the a-set.

Created By: MAPOL, Module AEROSENS or Module FBS

Notes:
1. For static analysis without inertia relief DUAV is determined by FBS; for iner-

tia relief, DUAV is merged from DURV and DULV. For static aeroelasticity,
DUAV is calculated in AEROSENS.

Entity: DUEV

Entity Type: Matrix

Description: Sensitivity of displacements in the f-set.

Matrix Form: The number of columns is equal to the number of active subcases times the num-
ber of design variables. The number of rows is equal to the number of terms in
the f-set.

Created By: MAPOL, Notes:
1. For generalized dynamic reduction, DUFV is obtained from DUAV and

GSUBO. For Guyan Reduction, DUFV is obtained from merging DUAV and
temporary matrix UO which represents the sensitivity of the displacements
in the o-set.

Entity: DUG

Entity Type: Matrix

Description: Summation of the DICJG and DMUG matrices.

Matrix Form: The number of columns is equal to NAC, the number of active subcases, times
NDV, the number of design variables. The number of columns is equal to the num-
ber of degrees of freedom in the g-set.

Created By: MAPOL

Notes:
1. If there are no SUPPORT degrees of freedom, DUG is equivalenced into

DKUG.

493

Entity: DULD _

Entity T•Ape: Matrix

Description: Matrix of sensitivities of the 1-set accelerations to changes in the design vari-
ables.

Matrix Form: The number of rows is equal to the number of degrees of 'reedom in the 1-set
while the number of columns is equal to the number of arrive load cases times the
number of design variables,

Created By: MAPOL

Notes:
1. This matrix is formed by multiplying D by DURD.
2. This matrix is constructed only when there is inertia relief and when the load

vectors have been determined to be active by module ABOUND.

Entity: DULV

Entity Type: Matrix

Description: Sensitivity of displacements in the I-set. The computed 3ensitivity of the active
subcases to changes in the design variable.

Matrix Form: The number of columns is equal to the number of active subcases times the num-
ber of design variables. The number of rows is equal to the number of terms in
the I-set.

Created By: Module FBS

Notes:
1. This matrix is created only when there is statics with inertia relief and when

the load vectors have been determined to be active by module ABOUND.

Entity: DURD

Entity Type: Matrix

Description: The sensitivity of the rigid body acceleration matrix to changes in the design vari-
ables.

Matrix Form: Real and rectangular. The number of rows is equal to the number of degrees of
freedom in the r-set while the number of columns is equal to the number of active
subcases times the number of design variables.

Created By: Module INERTIA

Notes:
1. This matrix is formed only when there is inertia relief and the applied load

has been determined to be active by module ABOUND.
2. The matrix is formed by solving

[M [DUD] = [nMWS]

494

.Entity: DVCT

Entity Type: Relation

Description: Contains the data required for the assembly of the DESIGN SENSITIVITY MA-
TRICES. Relation is sorted first by DVID and then by KSIL.

Relation Attributes:

NAME TYPE/KEY DES,.RIPTION

DVI D Integer > 0 Design variable identification number

PREF Real Design variable multiplier for shape function
coefficients

Exponential power associated with the design
ALPHA Real variable

KSIL I > 0 Internal identification for a grid connected to

IInteger the element

MODE Integer > 0 A code word denoting the form in which the
element stiffness matrix is stored

MODE I e> 0 A code word denoting the form in which the
EInteger element mass matrix is stored

TCODE Integer >0 A code word denoting the form in which the
element thermal loads sensitivities are stored

TREFPT Integer The position in TREF for the associated
reference temperature

NODES Integer > 0 The number of nodes connected to the element

The record number of the unstructured entity
IREC Integer > 0 KELM, MELM, or TELM that contains the

partition of the element matrix

List of awsociated sils of the element in sorted

ASILS Ivector (32) ordeI

Created By: Module EMG

Notes:
1. This relation contains one tuple for each design variable for each node of each

structural element.

495

2. The code words KCODE, MCODE and TCODE have the following definition:

KCODEIMCODE/TCODE
FOR SCALAR MEANING (No meaning for TCODE)ELEMENTS

I Scalar point connected to ground

2 Grid point component connected to a scalar point

3 Scalar point connected to grid component

4 Scalar point connected to a scalar point

5 Grid point component connected to ground

6 Grid point component connected to a second grid point
component

KCODEIMCODE/TCODE
FOR OTHER ELEMENTS
(CONNECTED TO GRID MEANING

POINTS)

7 Element has extensional DOF's only

8 Element has rotational DOF's only

9 Element has both extension and rotation

10 Element matrix has only diagonal extensional entries

11 Element matrix has only diagonal rotational entries

12 Element matrix has diagonal entries for all grid point
DOFs

3. AKCODE, MCODE or TCODE of zero implies that the element has no associ-
ated stiffness, mass or thermal load.

4. Design variable offset value is stored in INFO(ll) from EMG. It is used for
the pseudo design variable spawned to handle the non-linear portion of the
BAR element stiffness.

5. 7, 8, and 9 are the only values supported for TCODE.

49

496

, Entity: DVSIZE

Entity T1ype: Unstructured

Description: Contains memory allocation information on the DVCT relation.

Entity Structure:
Record 1.

WORD 1 Maximum number of DVCT tuples associated with any

one design variable other than zero

WORD 2 Number of tuples connected to "design variable" zero
WORD 3 throughNDV+2 u Number of tuples connected to each design variable

Created By: Module EMG

Notes:
1. Entity contains one record with NDV +2 words.

Entity: DWNWSH

Entity Type: Matrix

Description: Matrix containing downwash vectors that are computed for unic values of angle
of attack, pitch rate and trim surface deflection.

Matrix Form: Rectangular real matrix with three columns and rows equal to the number of pan-
els in the unsteady aerodynamics model.

Created By: Module BLASTFIT

497

Entity: DYNRED

Entity Type: Relation

Description: Contains the necessary information to perform general dynamic reduction as in-
put from the Bulk Data file.

Relation Attributes:

NAME j TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

FMAX Real > 0 Highest frequency of interest

NVEC Integer > 0 Number of generalized coordinates desired

NIT Integer > 0

ISEED Integer > 0
- Not Used

NQDES Integer > 0

EPZ Real

FACTOR Real

Created By: Module IFP

Entity: DIJK

Entity Type: Matrix

Description: The real part of the substantial derivative matrix.

Matrix Form: A rectangular complex matrix with the number of rows equal to the number of
aerodynamic degrees of freedom and the number of columns equal to the number
of aerodynamic panels.

Created By: Module UNSTEADY

Notes:
1. The complete substantial derivative matrix is equal te:

D1JK + (iK) D2JK

where k is the reduced frequency.

498

, Entity: D2JK

Entity Type: Matrix

Description: The imaginary part of the substantial derivative matrix.

Matrix Form: A cc,-nplex matrix with the number of rows equal to the number of aerodynamic
degr3es of freedom and the number of columns equal to the number of aerody-
nam.c panels.

Created By: Modu, ý UNSTEADY

Notes:
1. The complete substantial derivative matrix is equal to:

DIJK + (iK) D2JK

where k is the reduced frequency.

Entity: EIGC

Entity 'ype: Relation

Description: Contains the necessatry information to perform complex eigenvalue analysis as in-
put from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0, key Set identification number

METHOD 1bxt (8) Method of complex eigenvalue
extraction

NORM Text (8) Eigenvector normalization technique
GRI D1 Integer_0 Grid or 6 alar point identification

number

COMPNTS1 Integer Ž 0 Component of GRID1

ORTHPARM Real > 0.0 Mass orthogonality test parameter

PA Real The real part of complex point A

QA Real The imaginary part of complex point B

PB Real The real part of complex point A

QB Real The imaginary part of complex point B

WIDTH Real > 0.0 Width of region in complex plane

ROOTEST Integer > 0 Estimated number of roots in the range

ROOTDES Integer Žt 0 Desired number of roots

Created By: Module IFP

499

Entity: EIGR

Entity T1ype: Relatiorn

Description: C(ntains th3 necessary information to perform real eigerivalue analysis as input
from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETI D Integer > 0, key Set identification number

METHOD Text (8) Method of eigenvalue extraction

MINFREQ Real Ž 0.0 Lower bound for frequency

MAXFREQ j10al Ž 0.0 Uppor bound for frequency

ROOTEST1 Integer > 0 Estimated number of roots in the range

ROOTDES1 Intege e 0 Desired number of roots

ORTHPARM Real :, 0.0 Mass orthogonality test parameter

NORM Text (8) Eigenvector normalization technique

GRID1 I 0 Grid or scalar point identification
GRD _____Integer numbeI number

COMPNTS1 integer >0 Component of GRID1

Created By: Module IFP

Entity: ELAS

Entity Type: Matrix

Description: Intermediate matrix in the nuclear teiast response calculation contairing the mo-
dal participation factors for the initially Trimmed aircraft.

Matrix Form: ELAS contains one column and the numbt of rows is equal to the number of elas-
tice modes.

Created By: Module MAPOL

500

.Entity: ELASEST

Entity Type: Relation

Description: Contains the element summary data for the ELAS1 and ELAS2 elements.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

EID Integer > 0, Element identification numberkey

SILl, SIL2 Integer > 0 Internal grid or scalar point identification
number

COMPNT1 Integer >0 Component of SILl to which the element is
attached

COMPNT2 Integer > 0 Component of SIL2 to which the element is
attached

K Real Stiffness value
GE Real Damping coefficient
STRSCOEF Real Stress coefficient
DESIGN Integer > 0 Design flag, nonzero if element is designed

Created By: Module MAKEST

Notes:
1. This relation is built from the CELAS1 and CELAS2 relations along with as

sociated property and grid relations. It contains one tuple for each scalar
spring element in the problem.

Entity: ELEW IST

Entity Type: Relation

Description: Contains the list of elements for which element dependent outputs are requested
as input from the Bulk Data file.

Relation Attributes:

NAME "YPEIKEY DESCRIPTION

SID Integer > 0 Design vaiiable identification number

Element type. One of the following-
BAR QDMEM1
ELAS QUAD4

ETYPE Text (8) IHEXl ROD
IHEX2 SHEAR
IHEX3 TRIA3
TRMEM

EID Integer > 0 Element identification number

S Created By: Module IFP

501

Entity: ELIST

Entity Type: Relation

Description: Contains the element identification numbers of elements specified on the ELIST
Bulk Data entry.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

LINKID Integer > 0 ELIST set identification number

ETYPE1 Text (8) Element type

EID1 Integer> 0 Element identification number

Created By: Module IFP

Notes:
1. Allowable ETYPE1 entries are:

- CROD, CONROD - CMASS1, CMASS2
- CSHEAR - CBAR
- CQDMEM1 - CONM2
- CQUAD4 - CELAS1, CELAS2
- CTRIA3
- CTRMEM

502

. Entity: EOBAR

Entity Type: Relation

Description: Contains the element response quantities for the BAR element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/analyze flag

OAFLAG 2 > Integer > 1 =1 Optimization
=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
D 1 Statics = 5 TransientDISC Integer> 0 = 2 Modes = 7 Buckling

= 3 Steady Aero = 8 Blast
SUBCASE i r> 0 Subcase identification number if (DISC = 1, 3,

5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("BAR")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

RSA1 Real Real part of first bending stress at end A

ISA1 Real Imaginary part of first bending stress at end A

RSA2 Real Real part of second bending stress at end A

ISA2 Real Imaginary part of second bending stress at end
A

RSA3 Real Real part of third bending stress at end A

ISA3 Real Imaginary part of third bending stress at end A

RSA4 Real Real part of fourth bending stress at end A

ISA4 Real Imaginary part of fourth bending stress at end
A

RAAX Real Real part of axial stress at end A

IAAX Real Imaginary part of axial stress at end A

MAXA Real Maximum stress at end A

L MINA Real Minimum stress at end A

503

NAME TYPE/KEY DESCRIPTION

TSAFE Real Safety margin in tension

RSB1 Real Real part of first bending stress at end B

ISB1 Real Imaginary part of first bending stress at end B

RSB2 Real Real part of second bending stress at end B

ISB2 Real Imaginary part of second bending stress at end
B

RSB3 Real Real part of third bending stress at end B

ISB3 Real Imaginary part of third bending stress at end B

RSB4 Real Real part of fourth bending stress at end B

ISB4 Real Imaginary part of fourth bending stress at end

B

RBAX Real Real part of axial stress at end B

I BAX Real Imaginary part of axial stress at end B

MAXB Real Maximum stress at end B

MINB Real Minimum stress at end B

CSAFE Real Safety margin in compression

RSNA1 Real Real part of first bending strain at end A

I SNAl Real Imaginary part of first bending strain at end A

RSNA2 Real Real part of second bending strain at end A

I SNA2 Real Imaginary part of second bending strain at end
A

RSNA3 Real Real part of third bending strain at end A

I SNA3 Real Imaginary part of third bending strain at end A

RSNA4 Real Real part of fourth bending strain at end A

ISNA4 Real Imaginary part of fourth bending strain at end

A

RAAXN Real Real part of axial strain at end A

IAAXN Real Imaginary part of axial strain at end A

MAXAN Real Maximum strain at end A

MINAN Real Minimum strain at end A

RSNB1 Real Real part of first bending strain at end B

ISNB1 Real Imaginary part of first bending strain at end B

RSNB2 Real Real part of second bending strain at end B

504

NAME TYPE/KEY DESCRIPTION

I SNB2 Real Imaginary part of second bending strain at end
B

RSNB3 Real Real part of third bending strain at end B

ISNB3 Real Imaginary part of third bending strain at end B

RSNB4 Real Real part of fourth bending strain at end B
I SNB4 Real Imaginary part of fourth bending strain at end

B

RBAXN Real Real part of axial strain at end B

I BAXN Real Imaginary part of axial strain at end B

MAXBN Real Maximum strain at end B

MINBN Real Minumum strain at end B

RBMA1 Real Real part of bending moment Al

I BMLA Real Imaginary part of bending moment Al

RBMA2 Real Real part of bending moment A2

IBMA2 Real Imaginary part of bending momentA2

RBMB1 Real Real part of bending moment B1
BMB1 Real Imaginary part of bending moment B1

RBMB2 Real Real part of bending moment B2

I BMB2 Real Imaginary part of bending moment B2

RSHEAR1 Real Real part of shear 1

I SHEAR1 Real Imaginary part of shear 1

RSHEAR2 Real Real part of shear 2

I SHEAR2 Real Imaginary part of shear 2

RFOPAX Real Real part of axial force

I FORAX Real Imaginary part of axial force

RTORQUE Real Real part of torque

ITORQUE Real Imaginary part of torque

Created By: Module EDR
Notes:

1. This relation is used by module OFPEDR for output printing and punching.

5
505

Entity: EODISC

Entity Type: Unstructured

Description: Contains the element discipline types and their subcases for which element re-
sponse quantities are to be computed for each element in the structural model for
each boundary condition.

Record:
i. Record i contains the following for each EID/BCID combination to the EO-

SUMMARY relation.

WORD CONTENTS

1 NDISC, the number of disciplines in the EODISC record

2 DISC, discipline ID for the current discipline

3 NSUB, the number of subcases for which output is desired
from discipline DISC

4 to 3+NSUB SUBi, the subcase numbers in sorted order

Created By: Module PFBULK

Notes:
1. Words 2 through 4+NSUB are repeated for each of the NDISC disciplines to

generate a record in the form.

NDISC (DISCi, NSUBi, (SUBj), j= 1,NSUB), j= 1, NDISC)

2. Each record of EODISC is referenced by the RECORD attribute of the EO-
SUMMARY relation.

3. The EOSUMMARY/EODISC combination is used by EDR and OFPEDR to
control element response quantity computations.

4. Each record is ordered in discipline, in subpase order.
5. The records are ordered by boundary condition ID, element type (alphabeti-

cal) and element ID.

506

, Entity: EOELAS

Entity Type: Relation

Description: Contains the element response quantities for the ELAS element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/analyze flag
OAFLAG 2 Ž Integer - 1 =1 Optimization

--=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
= 1 Statics = 5 Transient
= 2 Modes = 7 Buckling

= 3 Steady Aero = 8 Blast
SUBCASE I > 0 Subcase identification number if (DISC = 1, 3,

5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("ELAS")

* Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

STRSR Real Real part of stress

STRSI Real Imaginary part of stress

FORR Real Real part of force

FORI Real Imaginary part of force

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.

507

Entity: EOHEX1

Entity Type: Relation

Description: Contains the element response quantities for the IHEX1 element.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

Optimize/analyze flag
OAFLAG 2 > Integer 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID integer > 0 Boundary condition identification number

Discipline type
DISC Integer>0 = 1 Statics = 5 Transien

= 2 Modes = 7 Buckling

= 3 Steady Aero = 8 Blast
SUCASE I r> 0 Subcase identification number if (DISC =

1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("IHEXI")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

GID Integer > 0 Stress point identification number

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

RSTRSX Real Real part of normal stress in x-direction
ISTRSX Real Imaginary part of normal stress in x-

direction

RSSXY Real Real part of shear stress in xy-plane

ISSXY Real Imaginary part of shear stress in xy-plane

PSTRESS1 Real First principal stress

XCOS1 Real First principal x cosine

XCOS2 Real Second principal x cosine

XCOS3 Real Third principal x cosine

MEANSTRS Real Mean stress

OCTSTRS Real Octahedral shear stress

RSTRSY Real Real part of normal stress in y-direction

508

NAME TYPE/KEY DESCRIPTION

IST RSY Real Imaginary part of normal stress in y-
direction

RSSYZ Real Real part of normal stress in yz-direction

ISSYZ Real Imaginary part of normal stress in yz-
direction

PSTRESS2 Real Second principal stress

YCOS1 Real First principal y cosine

YCOS2 Real Second principal y cosine

YCOS3 Real Third principal y cosine

RSTRSZ Real Real part of normal stress in z-direction

ISTRSZ Real Imaginary part of normal stress in z-

direction

RSSZX Real Real part of shear stress in zx-plane

ISsZX Real Imaginary part of shear stress in zx-plane

PSTRESS3 Real Third principal stress

zcos1 Real First principal z cosine

ZCOS2 deal Second principal z cosine

ZCOS3 Real Third principal z cosine

RSTRNX Real Real part of normal strain in x-direction

ISTRNX Real Imaginary part of normal strain in x-

direction

RSNXY Real Real part of shear strain in xy-plane

I SNXY Real Imaginary part of shear strain in xy-plane

PSTRAIN1 Real First principal strain

XCOS1N Real First principal x cosine

XCOS2N Real Second principal x cosine

XCOS3N Real Third principal x cosine

MEANSTRN Real Mean strain

OCTSTRN Real Octahedral shear strain

RSTRNY Real Real part of normal strain in y-direction

ISTRNY Real Imaginary part of normal strain in y-
direction

RSNYZ Real Real part of shear strain in yz-plane

ISNYZ Real Imaginary part of shear strain in yz-plane

509

NAME TYPEIKEY DESCRIPTION

PSTRAIN2 Real Second principal strain

YCOS1N Real First principal y cosine
YCOS2N Real Second principal y cosine

YCOS3N Real Third principal y cosine

RSTRNZ Real Real part of normal strain in z-direction

I STRNZ Real Imaginary part of normal strain in z-
direction

RSNZX Real Real part of shear strain in zx-plane

ISNZX Real Imaginary part of shear strain in zx-plane

PSTRAIN3 Real Third principal strain

ZCoS1N Real First principal z cosine

ZCOS2N Real Second principal z cosine

ZCOS3N Real Third principal z cosine

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.
2. One tuple exists for each of the nine stress points in the element.
3. The first eight stress points (attribute GID) are coincident with the element

grid points and are numbered 1 through 8 in the order that the grid points
are specified on the CI-EXi entity. The ninth stress point (GID=9) is located
at the center of the element.

510

. Entity: EOHEX2

Entity Type: Relation

Description: Contains the element response quantities for the IHEX2 element.

Relation Attributes:

NAME TYPE/KEY DESCRIP rION

Optimize/analyze flag
OAFLAG 2 _> Integer> 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
DISC Integer> 0= 1 Statics = 5 Transien

= 2 Modes = 7 Buckli

= 3 Steady Aero = 8 Blast

Subcase identification number if (DISC =
1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("IHEX2")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

GID Integer > 0 Stress point identification number

ES ER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

RSTRSX Real Real part of normal stress in x-direction

ISTRSX Real Imaginary part of normal stress in x-

direction

RSSXY Real Real part of shear stress in xy-plane

ISSXY Real Imaginary part of shear stress in xy-plane

PSTRESS1 Real First principal stress

XCOS1 Real First principal x cosine

XCOS2 Real Second principal x cosine

XCOS3 Real Third principal x cosine

MEANSTRS Real Mean stress

OCTSTRS Real Octahedral shear stress

RSTRSY Real Real part of normal stress in y-direction

511

NAME TYPE/KEY DESCRIPTION

ISTRSY Real Imaginary part of normal stress in y-
direction

RSSYZ Real Real part of normal stress in yz-plane

ISMYZ Real Imaginary part of normal stress in yz-plane

PSTRESS2 Real Second principal stress

YCOS1 Real First principal y cosine

YCOS2 Real Second principal y cosine

YCOS3 Real Third principal y cosine

RSTRSZ Real Real part of normal stress in z-direction

ISTRSZ Real imaginary part of normal stress in z-
direction

RSSZX Real Real part of shear stress in xy-plane

Isszx Real Imaginary part of shear stress in xy-plane

PSTRESS3 Real Third principal stress

zcosl Real First principal z cosine

ZCOS2 Real Second principal z cosine

ZCOS3 Real Third principal z cosine

RSTRNX Real Real part of normal strain in x-direction

ISTRNX Real Imaginary part of normal strain in x-
direction

RSNXY Real Real part of shear strain in xy-plane

I SNXY' Real Imaginary part of shear strain in xy-plane

PSTRAIN1 Real First principal strain

XCOS1N Real First principal x cosine

XCOS2N Real Second principal x cosine

XCOS3N Real Third principal x cosine

MEANSTRN Real Mean strain

OCTSTRN Real Octahedral shear strain

RSTRNY Real Real part of normal strain in y-direction

ISTRNY Real Imaginary part of normal strain in y-
direction

RSNYZ Real Real part of shear strain in yz-plane

I SNYZ Real Imaginary part of shear strain in yz-plane

PSTRAIN2 Real Second principal strain

512

NAME TYPE/KEY DESCRIPTION

YCOS1N Real First principal y cosine

YCOS2N Real Second principal y cosine

YCOS3N Real Third principal y cosine

RSTRNZ Real Real part of normal strain in z-direction

ISTRNZ Real Imaginary part of normal strain in z-
direction

RSTZX Real Real part of shear strain in z-direction

ISNZX Real Imaginary part of shear strain in z-
direction

PSTRAIN3 Real Third principal strain

ZCOS1N Real First principal z cosine

ZCOS2N Real Second principal z cosine

ZCOS3N Real Third principal z cosine

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.
2. One tuple exists for each of the nine stress points in the element.
3. The first 20 stress points are in the same order as the grid points are speci-

fied on the CIHEX2 entity and are numbered 1 through 20. The corner stress
points coincident with the corner grid points while the mid-edge stress points
are exactly at the mid-edge point. The 21st stress point is located at the ele-
ment center.

0
513

Entity: EOHEX3

Entity Type: Relation

Description: Contains the element response quantities for the I:HEX3 element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/analyze flag
OAFLAG 2 - Integer > 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
DISC Integer>0 = 1 Statics = 5 Transien= 2 Modes = 7 Buckling

= 3 Steady Aero = 8 Blast

SUBCASE Integer > 0 Subcase identification number if (DISC =
1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("IHEX3")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

GID Integer > 0 Stress point identification number

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

RSTRSX Real Real part of normal stress in x-direction
ISTRSX Real Imaginary part of normal stress in x-

direction

RSSXY Real Real part of shear stress in xy-plane

ISSXY Real Imaginary part of shear stress in xy-plane

PSTRESS1 Real First principal stress

XCOS1 Real First principal x cosine

XCOS2 Real Second principal x cosine

XCOS3 Real Third principal x cosine

MEANSTRS Real Mean stress

OCTSTRS Real Octahedral shear stress

RSTRSY Real Real part of normal stress in y-direction

514

NAME TYPE/KEY DESCRIPTION

ISTRSY Real Imaginary part of normal stress in y-
direction

RSSYZ Real Real part of normal stress in yz-plane

ISsYZ Real Imaginary part of normal stress in yz-plane

PSTRESS2 Real Second principal stress

YCOS 1 Real First principal y cosine

YCOS2 Real Second principal y cosine

YCOS3 Real Third principal y cosine

RSTRSZ Real Real part of normal stress in z-direction
ISTRSZ Real Imaginary part of normal stress in z-

direction

RSSZX Real Real part of shear stress in xy-plane

ISszx Real Imaginary part of shear stress in xy-plane

PSTRESS3 Real Third principal stress

zcos1 Real First principal z cosine

ZCOS2 Real Second principal z cosine

ZCOS3 Real Third principal z cosine

RSTRNX Real Real part of normal strain in x-direction
ISTRNX Real Imaginary part of normal strain in x-

direction

RSNXY Real Real part of shear strain in xy-plane

I SNXY Real Imaginary part of shear strain in xy-plane

PSTPAINI Real First principal strain

XCOS1N Real First principal x cosine

XCOS2N Real Second principal x cosine

XCOS3N Real Third principal x cosine

MEANSTRN Real Mean strain

OCTSTRN Real Octahedral shear strain

RSTRNY Real Real part of normal strain in y-direction

ISTRNY Real Imaginary part of normal strain in y-
direction

RSNYZ Real Real part of shear strain in yz-plane

ISNYZ Real Imaginary part of shear btrain in yz-plane

PSTRAIN2 Real Second principal strain

515

NAME TYPE/KEY DESCRIPTION

YCOS1N Real First principal y cosine

YCOS2N Real Second principal y cosine

YCOS3N Real Third principal y cosine

RSTRNZ Real Real part of normal strain in z-direction

I STPNZ Real Imaginary part of normal strain in z-
___STR __Z Realdirection

RSTZX Real Real part of shear strain in z-direction

ISNZX Real Imaginary part of shear strain in z-

direction

PSTRAIN3 Real Third principal strain

ZCoS1N Real First principal z cosine

ZCOS2N Real Second principal z cosine

ZCOS3N Real Third principal z cosine

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.
2. One tuple exists for each of the nine stress points in the element.

3. The first 20 stress points are in the same order as the grid points are speci-
fied on the CIHEX3 entity and are numbered 1 through 20. The corner stress
points coincident with the corner grid points while the mid-edge stress points
are exacdly at the mid-edge point. The 21st stress point is located at the ele-
ment center.

516

Entity: EOQDMM1

Entity Type: Relation

Description: Contains the element response quantities for the

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/analyze flag
OAFLAG 2 Ž Integer> 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
DISC Integer>0 = 1 Statics = 5 Transien= 2 Modes = 7 Buckli

= 3 Steady Aero = 8 Blast

Subcase identification number if (DISC =
1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("QDMEM1")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

LAYRNUM Integer > 0 Layer number

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

RSTRSX Real Real part of normal stress in x-direction

ISTRSX Real Imaginary part of normal stress in x-
direction

RSTRSY Real Real part of normal stress in y-direction

ISTRSY Real Imaginary part of normal stress in y-

direction

RSTRSS Real Real part of shear stress

ISTRSS Real Imaginary part of shear stress

THSTRS Real Principal angle for stress

STRS1 Real Major principal stress

STRS2 Real Minor principal stress

MSSTRS Real Maximum shear stress

RSTRNX Real Real part of normal strain in x-direction

517

NAME TYPE/KEY DESCRIPTION

ISTRNX Real Imaginary part of normal strain in x-
direction

RSTRNY Real Real part of normal strain in y-direction

ISTRNY Real Imaginary part of normal strain in y-
direction

RSTRNS Real Real part of shear strain

ISTRNS Real Imaginary part of shear strain

THSTRN Real Principal angle for strain

STRN1 Real Major principal straii.

STRN2 Real Minor principal atrain

MSSTRN Real Maximum shear strain

RFX Real Real part of force in x-direction

I FX Real Imaginary part of force in x-direction

RFY Real Real part of force in y-direction

IFY Real Imaginary part of force in y-direction

RFXY Real Real part of shear force in xy-plane

I FXY Real Imaginary part of shear force in xy-plane

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.

518

* Entity: EOQUAD4

Entity Type: Relation

Description: Contains the element response quantities for the QUAD4 element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/analyze flag
OAFLAG 2 > Integer > 1 =1 Optimization

=2 Analysis

NITER 11lteger > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
DISC Integer> 0 = 1 Statics = 5 Transien

= 2 Modes = 7 Buckli
= 3 Steady Aero = 8 Blast

SUBASE I > 0 Subcase identification number if (DISC =
1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("QUAD4")

Complex output identifier
SCMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

LAYRNUM Integer > 0 Layer number

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

z 1 Real Fiber distance 1

RSTRSXI. Real Real part of normal stress in x-direction at
Zi

ISTRSX1 Real Imaginary part of normal stress in x-
direction at Z1

RSTRSY1 Real Real part of stress in y-direction at Z1

ISTRSY1 Real Imaginary part of stress in y-direction at Z1

RSSXY1 Real Real part of shear stress at Z1

IsSXY1 Real Imaginary part of shear stress at Z1

ANGLES1 Real Principal angle for stress at Z1

STRS11 Real Major principal stress at Z1

STRS12 Real Minor principal stress at Z1

MAXSS1 Real Maximum shear stress at Z1

519

NAME TYPE/KEY DESCRIPTION

Z2 Real Fiber distance 2

RSTRSX2 Real Real part of stress in x-direction at Z2

ISTRSX2 Real Imaginary part of stress in x-direction at Z2

RSTRSY2 Real Real part of stress in y-direction at Z2

ISTRSY2 Real Imaginary part of stress in y-direction at Z2

RSSXY2 Real Real part of shear stress at Z2

ISSXY2 Real Imaginary part of shear stress at Z2

ANGLES2 Real Principal angle for stress at Z2

STRS21 Real Major principal stress at Z2

STRS22 Real Minor principal stress at Z2

MAXSS2 Real Maximum shear stress at Z2

RSTRNX1 Real Real part of strain in x-direction at ZI

ISTRNX1 Real Imaginary part of strain in x-direction at Z1

RSTRNY1 Real Real part of strain in y-direction at Z1

ISTRNY! Real Imaginary part of strain in y-direction at Z1

RSNXY1 Real Real part of shear strain at Z1

ISNXY1 Real Imaginary part of shear strain at Z1

ANGLEN1 Real Principal axis angle at Z1

STRN11 Real Major principal strain at Z1

STRN12 Real Minor principal strain at Z1

MAXNS1 Real Maximum shear strain at Z1

RSTRNX2 Real Real part of strain in x-direction at Z2

ISTRNX2 Real Imaginary part of strain in x-direction at Z2

RSTRNY2 Real Real part of strain in y-direction at Z2

ISTRNY2 Real Imaginary part of strain in y-direction at Z2

RSNXY2 Real Real part of shear strain at Z2

ISNXY2 Real Imaginary part of shear strain at Z2

ANGELN2 Real Principal axis angle at Z2

STRN21 Real Major principal strain at Z2

STRN22 Real Minor principal strain at Z2

MAXSN2 Real Maximum shear strain at Z2

RMEMX Real Real part of membrane force in x-direction

520

NAME TYPE/KEY DESCRIPTION

IMEMX Real ImaL;inary part of membrane force in x-
direction

RMEMY Real Real part of mpmbrane force in Y-direction

IMFA4Y Real Imaginary part of membrane ir'rce iU y
direction

RMEMXY Real Real part of membrane force in xy-plane

IMEMXY Real imaginary part of membrane force in xy-
plane

RBENDX Real Real part of bending moment in x-direction

I BENDX Real Imaginary part of bending moment in x-
direction

RBENDY Real Real part of bending moment in y-direction

IBENDY Real Imaginary part of bending moment in y-
direction

RBENDXY Real Real part of bending moment in xy-plane

IBENDXY Real Imaginary part of bending moment in xy-
plane

RSHEARX Real Real part of shear force in x-direction

ISHEARX Real Imaginary part of shear force in x-direction
RSHEARY Real Real part of shear force in y-direction

ISHEARY Real Imaginary part of shear force in y-direction

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for printing and punching.

521

Entity: EOROD

Entity Type: Relation

Description: Contains the element response quantities for the ROD element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Optimize/anajyze flag
OAD LAG 2 > Integer 1 =1 Optimization

.=2 Analysis
NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
DISC Integer>0 = 1 Statics = 5 Transien

= 2 Modes = 7 Buckling
= 3 Steady Aero = 8 Blast

Subcase identification number if (DISC =
1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("ROD")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities
ESER . Real Real part of element strain energy
ESEI Real Imaginary part of element strain energy
RAXSTRS Real Real part of axial stress

IAXSTRS Real Imaginary part of axial stress

RTORSTRS Real Real part of torsional stress

ITORSTRS Real Rmegnary part of torsional stress

AMARSTRS Real Axial stress margin of safety

TMARSTRS Real TArsional stress margin of safety

RAXSTRN Real Real part of axial strain

IAXSTRN Real Imaginary part of axial strain

RTORSTRN Real Real part of torsional strain

ITORSTRN Real Imaginary part of torsional strain

RAXFOR Real Real part of axial force

IAXFOR Real Imaginary part of axial force
RTORQUE Real Real part of torsional force

ITORQUE Real Imaginary part of torsional force

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for printing and punching.

5
522

. Entity: EOSHEAR

Entity Type: Relation

Description: Contains the element response quantities for the SHEAR element.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

Optimize/analyze flag
OAFIAG 2 >_ Integer - 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCI D Integer > 0 Boundary condition identification number

Discipline type
DISC Integer>0 = 1 Statics = 5 Transien

= 2 Modes = 7 Buckli

= 3 Steady Aero = 8 Blast

Subcase identification number if (DISC =1, 3, 5, 8) or Mode Number if "DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("SHEAR")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

RMAXSTRS Real Real part of maximum shear stress

IMAXSTRS Real Imaginary part of maximum shear stress

RAVESTRS Real Real part of average shear stress

IAVESTRS Real Imaginary part of average shear stress

SMARSTRS Real Stress safety margin

RMAXSTRN Real Real part of maximum shear strain

IMAXSTRN Real Imaginary part of maximum shear strain

RAVESTRN Real Real part of average shear strain

IAVESTRN Real Imaginary part of average shear strain

RF14 Real Real part of normal force on 1 from 4

IF14 Real Imaginary part of normal force on 1 from 4

RF12 Real Real part of normal force on 1 from 2

IF12 Real Imaginary part of normal force on 1 from 2

RF21 Real Real part of normal force on 2 from 1

I F21 Real Imaginary part of normal force on 2 from 1

523

NAME TYPE/KEY DESCRIPTION I
RF2 3 Real Real part of normal force on 2 from 3

IF23 Real Imaginary part of normal force on 2 from 3

RF32 Real Real part of normal force on 3 from 2

IF32 Real Imaginary part of normal force on 3 from 2

RF34 Real Real part of normal force on 3 from 4

I F34 Real Imaginary part of normal force on 3 from 4

RF4 3 Real Real part of normal force on 4 from 3

IF43 Real Imaginary part of normal force on 4 from 3

RF4 1 Real Real part of normal force on 4 from 1

IF41 Real Imaginary part of normal force on 4 from 1

RK1 Real Real part of shear panel kick force at 1

Mi Real Imaginary part of shear panel kick force at
1

RS12 Real Real part of shear force 1-2

IS12 Real Imaginary part of shear force 1-2

RK2 Real Real part of shear panel kick force at 2

IK2 Real Imaginary part of shear panel kick force at

RS23 Real Real part of shear force 2-3

Rs23 Real Imaginary part of shear force 2-3

RK3 Real Real part of shear panel kick force at 3

IK3 Real Imaginary part of shear panel kick force at

3

RS34 Real Real part of shear force 3-4

IS34 Real Imaginary par. of shear force 3-4
RK4 Real Real part of shear panel kick force at 4
RK4 Real Imaginary part of shear panel kick force at

4

RS41 Real Real part of shear force 4-1

!S41 J Real Imaginary part of shear force 4-1

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.

5
524

. Entity: EOSUMMRY

Entity T~ype: Relation

Description: Contains a summary of the element output requests.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

BCID Integer > 0 Boundary condition identification number

NITER Integer > -1 Iteration step for output (-1 for all)

EID Integer > 0 Element identification number

ETYPE Text (8) Element type (example: "ROD")

R Record number in EODISC unstructured

I r entity containing related data

Created By: Module PFBULK

Notes:
1. For each BCID, the tuples are sorted by ETYPE and then EID.

525

Entity: EOTRIA3

Entity : ype: Relation

Description: Contains the element response quantities for the TRIA3 element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION
Optimize/analyze flag

OAFLAG 2 > Integer > 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
DISC Integer>0 = 1 Statics = 5 - ransien

= 2 Modes = 7 Buckling
= 3 Steady Aero = 8 Blast

SUBCASE I > Subease identification number if (DISC =
1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("TRIA3")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities I

= 2 if complex response quantities

LAYRNUM Integer > 0 Layer number

ESER Real Real part of element strain energy

ESEI Real Imaginary part of element strain energy

Z 1 Real Fiber distance 1

RSTRSX1 Real Real part of normal stress in x-direction at
Zi

ISTRSX1 Real Imaginary part of normal stress in x-
direction at Z1

RSTRSY1 Real Real part of stress in y-direction at Z1

ISTRSY1 Real Imaginary part of stress in y-direction at Z1

RSSXY1 Real Real part of shear stress at Z1

ISSxY1 Real Imaginary part of shear stress at Z1

ANGLES1 Real Principal angle for stress at ZI

STRS11 Real Major principal stress at Z1

STRS12 Real Minor principal stress at Z1

MAXSS1 Real Maximum shear stress at Z1

526

NAME TYPE/KEY DESCRIPTION

Z2 Real Fiber distance 2

RSTRSX2 Real Real part of stress in x-direction at Z2

ISTRSX2 Real Imaginary part of stress in x-direction at Z2

RSTRSY2 Real Real part of stress in y-direction at Z2

ISTRSY2 Real Imaginary part of stress in y-direction at Z2

RSSXY2 Real Real part of shear stress at Z2

ISSXY2 Real Imaginary part of shear stress at Z2

ANGLES2 Real Principal angle for stress at Z2

STRS21 Real Major principal stress at Z2

STRS22 Real Minor principal stress at Z2

MAXSS2 Real Maximum shear stress at Z2

RSTRNX1 Real Real part of strain in x-direction at Z1

ISTRNX1 Real Imaginary part of strain in x-direction at Z1

RSTPNY1 Real Real part of strain in y-direction at Z1

ISTRNY1 Real Imaginary part of strain in y-direction at Z1

RSNXY1 Real Real part of shear strain at Z1

ISNXY1 Real Imaginaryl part of shear strain at Z1

ANGLEN1 Real Principal axis angle at Z1

STRN1l Real Major principal strain at Z1

STRN12 Real Minor principal strain at Z1

MAXNS1 Real Maximum shear strain at Z1

RSTRNX2 Real Real part of strain in x-direction at Z2

ISTRNX2 Real Imaginary part of strain in x-direction at Z2

RSTRVIY2 Real Real part of strain in y-direction at Z2

ISTRNY2 Real Imaginary part cf strain in y-direction at Z2

RSNXY2 Real Real par' of shear strain at Z2

I SNXY2 Real Imaginary part of shear strain at Z2

ANGELN2 Real Principal axis angle at Z2

STRN21 Real Major principal strain at Z2

STRN22 Peal Minor principal strain at Z2

MAXSN2 Real Maximum shear strain at Z2

RMF,,MX Real Real part of membrane force in x-direction

527

NAME TYPE/KEY DESCRIPTION

IMEM Real Imaginary part of membrane force in x-
direction

RMEMY Real Real part of membrane force in y-direction

IMEMY Real Imaginary part of membrane force in y-
direction

PMEMXY Real Real part of membrane force in xy-plane

IMEMXY Real Imaginary part of membrane force in xy-
plane

RBENDX Real Real part of bending moment in x-direction

IBENDX Real Imaginary part of bending moment in x-
direction

RBENDY Real Real part of bending moment in y-direction

IBENDY Real Imaginary part of bending moment in y-
direction

RBENDXY Real Real part of bending moment in xy-plane

IBENDXY Real Imaginary part of bending moment in xy-

plane

RSHEARX Real Real part of shear force in x-direction

ISHEARX Real Imaginary part of shear force in x-direction

RSHEARY Real Real part of shear force in y-direction

I SHEARY Real Imaginary part of shear force in y-direction

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.

528

. Entity: EOTRMEM

Entity Type: Relation

Description: Contains the element response quantities for the TRMEM element.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

Optimize/analyze flag
OAFLAG 2 _ Integer > 1 =1 Optimization

=2 Analysis

NITER Integer > 0 Iteration number for optimization

BCID Integer > 0 Boundary condition identification number

Discipline type
= 1 Statics = 5 Transien
= 2 Modes = 7 Buckli

= 3 Steady Aero = 8 Blast
SUBCASE I > 0 Subcase identification number if (DISC =

1, 3, 5, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE String Element type ("ThMEM")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

LAYRNUM Integer > 0 Layer number

ESER Real Real part of element strain energy

E ESEI Real Imaginary part of element strain energy

RSTRSX Real Real part of normal stress in x-direction

I STRSX Real Imaginary part of normal stress in x-
direction

RSTRSY Real Real part of normal stress in y-direction

I STRSY Real Imaginary part of normal stress in y-
direction

RSTRSS Real Real part of shear stress

ISTRSS Real Imaginary part of shear stress

THSTRS Real Principal angle for stress

STRS1 Real Major principal stress

STRS2 Real Minor principal stress

MSSTR.S Real Maximum shear stress

RSTRNX Real Real part of normal strain in x-direction

529

NAME TYPE/KEY DESCRIPTION

ISTRNX Real Imaginary part of normal strain in x-
direction

RSTRNY Real Real part of normal strain in y-direction
ISTRNY Real Imaginary part of normal strain in y-

direction

RSTRNS Real Real part of shear strain

I STRNS Real Imaginary part of shear strain

THSTRN Real Principal angle for strain

STRN1 Real Major principal strain

STRN2 Real Minor principal atrain

MSSTRN Real Maximum shear strain

RFX Real Real part of force in x-direction

I FX Real Imaginary part of force in x-direction

RFY Real Real part of force in y-direction

IFY Real Imaginary part of force in y-direction

RFXY Real Real part of shear force in xy-plane

I FXY Real Imaginary part of shear force in xy-plane

Created By: Module EDR

Notes:
1. This relation is used by module OFPEDR for output printing and punching.

I5
530

.Entity: EPOINT

Entity Type: Relation

Description: Contains the identification numbers of those points to be used as extra points. In-
put from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Extra point set identification number

EXTID Integer > 0 Extra point identification number

Created By: Module IFP

Entity: FFT

Entity Type: Relation

Description: Contains the parameters required for controlling the Fast Fourier Transforma-
tion as input from the Bulk Data file

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SID Integer > 0, key FFT set identification number

TIME Real > 0 Length of time period

NT Integer > 2 Number of time points

RDELTF Real Ratio of frequency range increment to

!/TIME

RF Real Ratio of frequency range to NT/2*TIME

FRIM Text (8) Frequency interpolation method

OTYPE Text (8) Types of response output

FLIM Text (8) Frequency load interpolation method

Created By: Module IFP

0
531

Entity: FLFACT

Entity Type: Relation

Description: Contains flutter aerodynamic input data as defined on the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

VALUE Real Data value

Created By: Module IFP

Notes:
1. This relation contains one tuple for each value in each set defined on the

FLFACT entry.

Entity: FLUTMODE

Entity Type: Matrix

Description: A matrix used to store the complex modal participation factors for any flutter
eigenvectors computed during flutter analyses in analysis boundary conditions.

Matrix Form: A complex rectangular matrix with one row for each normal mode (including
those omitted from the flutter analysis) and one column for each flutter eigenvec-
tor found in the current boundary condition.

Created By: FLUTTRAN

Notes:
1. The FLUTREL entity contains additional data to identify the flutter condi-

tion for each mode.
2. This entity is flushed between each analysis boundary condition having flut-

ter analyses.
3. This entity is not used in the optimization boundary conditions.

532

. Entity: FLUTREL

Entity Type: Relation

Description: Contains the flutter results for each flutter engenvector/eigenvalue found during
flutter analyses.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SUBID Integer > 0 Flutter subcase identification number

COLUMN Integer > 0 Column number in FLUTMODE for
corresponding participation factors

MACH Real Flutter Mach number

RHORATIO Real > 0 Flhtter density ratio

RFRQ Real > 0 Flutter reduced frequency

VEL Real Flutter velocity

RHOREF Real > 0 Reference density

REFCHORD Real > 0 Reference chord length

Created By: Module FLUTTRAN
SNotes:

1. This entity is used to print the flutter mode shapes in physical coordinates.

533

Entity: FLUTTER

Entity Type: Relation

Description: Contains the definition of data needed to perform flut.-r analyses as input from
the bulk data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

METHOD Text (4) Flutter analysis method = K, PK or KE

DENS Integer > 0 Identification of FLFACT tuples defining
density ratios

MACHVAL Real > 0.0 Mach number to be used in the Flutter analyses

VEL Integer > 0 Identification of FLFACT tuples specifying
velocities

Identification number of SET1 entries listing
MLIST Integer the normal modes to be omitted in the flutter

analysis

Identification of FLFACT tuples specifying a

KLIST Integer list of "hard point" reduced frequencies for the
given Mach number for use in the Flutter
analysis

EFFID Identification of a CONEFFF set specifying
DInteger control surface effectiveness values

SYMXZ Integer Symmetry flag for xz-plane

SYMXY Integer Symmetry flag for xy-plane

EPS Real Convergence parameter for flutter eigenvalue

CURVFIT Text(8) Type of curve fit to be used in the PK flutter
analysis

Created By: Module IFP

534

Entity: FORCE

Entity Type: Relation

Description: Contains the definition of a static load at a grid point as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

GRIDI Integer > 0 Grid point at which the load is applied

CID1 Integer Ž 0 Coordinate system identification

SCALE Real Scale factor

N1, N2, N3 Real Components of the force vector

Created By: Module IFP

Entity: FORCE 1

Entity Type: Relation

Description: Contains the definition of a load applied at a grid point with the direction deter-
mined by a line connecting two grid points.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Set identification number

GRID1 Integer > 0 Grid point id at which the force is applied

SCALE Real Scale factor

GRID2, GRID3 integer > 0 Grid point identification

Created By: Module IFP

535

Entity: FREQ

Entity Type: Relation

Description: Contains frequency values to be used for solution in frequency response.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SID Integer > 0 Set identification number

FREQ Real Frequency value

Created By: Module IFP

Notes:
1. The relation is used in subroutine PREFRQ in the generation of the FREQL

entity.
2. The unit for F.EQ is Hertz.
3. The set is selected in Solution Control.

Entity: FREQ1

Entity Type: Relation

Description: Contains information to specify frequencies used in frequency response solution
as input from the Bulk Data file.

Relation Attributes:4

NAME TYPEIKEY DESCRIPTION

SID Integer > 0 Set identification number

F1 Real > 0.0 First frequency in a set

DFRQ Real > 0.0 Frequency increment

NDFR Integer Number of increments

Created By: Module IFT

Notes:
1. The relation is used in subroutine PREFRQ in the generation of the FREQL

entity.
2. Units for F1 and DFREQ, when input, are Hertz.
3. The set is selected in Solution Control.

.536

Entity: FREQ2

Entity Type: Relation

Description: Contains information to specify frequencies used in frequency response solution
as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SID Integer > 0 Set identification number

F1 Real > 0.0 First frequency value

F2 Real > 0.0, F2 > F! Last frequency value

NLOGI Integer > 0 Number of increments

Created By: Module IFP

Notes:
1. The relation is used in subroutine PREFRQ in the generation of the FREQL

entity.
2. Units for F1 and F2, when input, are Hertz.
3. The set is selected in Solution Control.

.Entity: FREQL

Entity Type: Unstructured

Description: Contains a list of frequencies for each frequency set.

Record:
1. Contains a list of the LIDs of the frequency sets in the Bulk Data file.
i. Contains the frequency list for the (i-1)th set ID.

Created By: Module PFBULK

Notes:
1. This entity is used in the generation of frequency dependent loads in the

DMA module.

0

537

Entity: FREQLIST

Entity Type: Relation

Description: Contains the list of frequencies for which outputs are requested as input from
the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SI D Integer Set identification number

FREQ Real Frequency value in Hertz.

Created By: Mobile IFP

Entity: FTF

Entity Type: Matrix

Description: A matrix used in the nuclear blast response calculation to compute the forces on
structural modes given the forces at the aerodynamic panels.

Matrix Form: Areal, rectangular matrix with the number of rows equal to the number of aero-
dynamic panels.

Created By: MAPOL
Notes:4

1. FTF is computed using:

[FTF] = [PHIB]T * [BLGTJA]

Entity: GASUBO

Entity Type: Subscripted Matrix

Description: Contains the matrix product:

- [--OO 1 -J [KAOA1

used in the static reduction of the free degrees of freedom. This matrix includes
the aeroelastic terms.

Matrix Form: A variable-sized matrix having one row for each omitted degree of freedom and
one column for each degree of freedom in the analysis set for the current bound-
ary condition.

Created By: MAPOL

Notes:
1. The dimension of this subscripted matrix must be large enough for all optimi-

zation and analysis boundary conditions.

538

,Entity: GDVLIST

Entity Týyr : Relation

Description: Contains the definition of the list of global design variables as input from the
Bulk Data file.

Relation Attributea:

NAME TYPE/KEY DESCRIPTION

SETID Integer Set identification number

DVID Integer Global design variable identification

Created By: Module IFP

Entity: GENFA

Entity Type: Matrix

Description: The generalized force matrix form of the MATSS matrix developed for nuclear
blast response.

Matrix Form: Real rectangular matrix with the number of rows equal to the number of modes
retained for the blast analysis and the number of columns equal to the number of
panels in the unsteady aerodynamics model.

Created By: Module MAPOL

Entity: GENF

Entity Type: Matrix

Description: The generalized matrix form of the BFRC matrix developed for nuclear blast re-
sponse.

Matrix Form: Real rectangular matrix with the number of rows equal to the number of modes
retained for the blast analysis and three columns.

Created By: Module MAPOL

Entity: GENK

Entity Type: Matrix

Description: The generalized matrix form of the KAA matrix developed for nuclear blast re-
sponse.

Matrix Form: Real square matrix with the number of rows equal to the number of modes re-
tained for the blast analysis.

Created By: Module MAPOL

539

Entity: GENM

Entity Type: Matrix

Description: The generalized matrix form of the MAA matrix developed for nuclear blast re-
sponse.

Matrix Form: Real square matrix with the number of rows and columns equal to the number of
modes retained for the blast analysis.

Created By: Module MAPOL

Entity: GENQL

Entity Type: Matrix

Description: The generalized matrix form of the MATTR matrix developed for nuclear blast re-
sponse.

Matrix Form: Real rectangular matrix with the number of rows equal to the number of modes
retained for the blast analysis and the number of columns equal to the number of
panels in the unsteady aerodynamics model times the number of beta values used
in the fitting process.

Created By: Module MAPOL

Entity: GENQ

Entity Type: Matrix

Description: The generalized matrix form of the MATSS matrix developed for nuclear blast re-
sponse.

Matrix Form: Real square matrix with the number of rows equal to the number of modes re-
tained for the blast analysis and the number of columns equal to the number of
panels in the unsteady aerodynamics model times the number of beta values used
in the fitting process.

Created By: Module MAPOL

Entity: GFE

Entity Type: Matrix

Description: A partition of the GENF matrix (see GENF).

Entity: GFR

Entity Type: Matrix

Description: A partition of the GENF matrix (see GENF).

4
S~540

. Entity: GEOMSA

Entity Type: Relation

Description: Contains data on the geometric location of the aerod namic degrees of freedom
for the planar and nonplanar steady aerodynamics models.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

Planar or nonplanar steady aerodynamics

MODEL Integer model identifier
= 1 for planar model
= - 2 for nonpianar model

MACROID Integer Component identification number

ACMPNT Text (8) Component type
One of WING, FIN, CANARD, POD, or FUSEL

Number of degrees of freedom at the point.
NDOF Integer = 1 for all steady aerodynamic boxes

refer to GEOMUA for unsteady model options.
EXTID Integer External box identification number

Internal box identification number. This is the
row and/or column number in the AICMAT

AREA Real The area of the box.

X Real The x location of the box centroid in basic
coordinates.

Y Real The y location of the box centroid in basic
coordinates.

z Real The z location of the box centroid in basiccoordinates.

N1 Real The x component of the box normal in basic
coordinates.

N2 Real The y component of the box normal in basic
coordinates.

N3 Real The z component of the box normal in basic
coordinates.

R1 Real The x component of the box iotation axis inR1 basic coordinates.

R2 Real The y component of the box rotation axis in
basic coordinates.

R3 Real The z component of the box rotation axis in
basic coordinates.

Created By: Module STEADY and STEADYNP

Notes:
1. These data are used in splining the aerodynamic forces to the structural

model, in splining structural deflections to the aerodynamic model and in re-
covering trimmed pressures and displacements on the aerodynamic model.

541

Entity: GEOMUA

Entity Type: Relation

Description: Contains data on the geometric location of the aerodynamic degrees of freedom
for the unsteady aerodynamics models. Two entries are loaded for ZY boxes to ac-
count for the two normals during splining.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

MACROID integer Component identification number

ACMPNT Text (8) Component type
One of WING, FIN, CANARD, POD, or FUSEL

Number of degrees of freedom at the point.

NDOF I= 1 for all lifting surface boxes CAERO1
FInteger = 2 for all body surface boxes CAERO2

EXTID Integer External box identification number

INTID Integer Internal box identification number.

AREA Real The area of the box.

The x location of the box centroid in basic
x Real coordinates.

The y location of the box centroid in basic
coordinates.

The z location of the box centroid in basic
z Real Icoordinates.

ZThe x compenent of the box normal in basic
coordinates.

N2 Real The y component of the box normal in basic
coordinates.

The z component of the box normal in basic
coordinates.

RThe x component of the box rotation axis inR basic coordinates.

R2 Real The y component of the box rotation axis in
basic coordinates.

R3 Real The b component of the box rotation axis inIbasic coordinates.The z component o h o oainaiR3Real Ibasic coordinates. ____________

Created By: Mo, l UNSTEADY

542

Entity: GGO

Entity Type: Matrix

Description: Rigid body transformation matrix to transfer displacements at the origin of the
basic coordinate system to g-set displacements.

Matrix Form: Real rectangular matrix with g-set rows and up to six columns.
Created By: Module GDR1

Entity: GLBDES

Entity Type: Relation

Description: Contains current design variable information for all design variables in the prob-
lem.

Relation Attributes:

NAME I TYPEI/KEY DESCRIPTION

NITER Integer Iteration number

DOBJ Real Sensitivity of the objective to the design
variable

DVID Integer > 0, key Design variable identification number

OPTION Integer 1, 2L.3 Design variable linking option

LINKID Integer Link set identification

EID I > 0 Element id if design variable uniquelyEIDIntger>I linked to one element

ETYPE Text (8) Element type if unique linking

LAYRNUM Integer Layer number if unique or physical linking

LAYRLST IPLYLIST identifier if multiple plies are
Integer linked togethe-

VMIN Real Minimum value for design variable

VMAX Real Maximum value for design variable

VALUE Real Current value of design variable

LABEL Text (8) User identification label

Created By: Module MAKEST, DOBJ is computed in EMA

Notes:
1. The linking options are:

OPTION = 1 DESELM linking
OPTION = 2 DESVARP linking
OPTION = 3 DESVARS linking

2. Design variable offset is stored in INFO(11) from MAKEST. The value is
transferred to DVCT in the EMG module. The offset is used to generate
pseudo design variables to control the bending behavior of designed CBAR
elements.

543

Entity: GLBSIG

Entity Type: Matrix

Description: Contains the stress and strain components in the element coordinate system for
elements constrained through stress/strain constraint bulk kdata entries.

Matrix Form: A variable-size matrix having one row for each stress/strain component for each
element subject to a strength constraint and one column for each load condition
within each boundary condition. The order of the matrix rows is in element id or-
der of constrained elements within each element type. The element types are cur-
rently processed in the following order:

(1) BAR; aal, aa2, aa3,aa4, Obl, %b2, b3, 0b4
(2) QDMEM1; ax, `y, txy
(3) QUAD4; 'x, 'y, t xy
(4) ROD; ax Txy
(5) SHEAR; 'xy
(6) TRIA3; ax, 'y, txy
(7) TRMEM; ax, 'y, txy

The columns are processed in load condition order for each boundary condition.

Created By: Module SCEVAL

Notes:
1. If no elements are constrained, this matrix will be empty.
2. Refer to the SMAT documentation for further details as GLBSIG is essen-

tially:

[MST] [ug]

3. Each boundary condition's load conditions are appended onto the existing
GLBSIG columns within the SCEVAL module.

544

O Entity: GMKCT

Entity Type: Relation

Description: Contains data required to interpret the DKVI unstructured entity for the purpose
of assembling the global stiffness matrix. The relation is sorted by DVID and
KSIL.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

DVID Integer > 0 Design variable identification

Internal id of grid or scalar point
connected to the design variable

KCODE I > 0 Codeword denoting the form in which the
DKVI data are stored

NODES Integer 0 < NODES < Number of nodes being processed with
20 this KSIL

IREC I > Record number of DKVI entity where
data are stored

ASIL Ivector (20) List of associated SILS

SALPHA Real Exponential power associated with BAR1 Relement design variable

Created By: Module EMA1

Notes:
1. KCODE definitions:

= 1 Multiple associated grids with both extensional and rotational
degrees of freedom.

= 2 Column being assembled is a scalar point. Associated SILS
may or may not be scalar points.

= 3 Column being assembled is a grid point. At least one row is a
scalar point.

= 4 Only extensional dgrees of freedom are included in the as-
sembly process

2. The INFO array for this entity contains additional memory management allo-
cation data:
INFO(11) - The number of tuples connected to the zeroth design

variable.
INFO(12) - The maximum number of tuples connected to any one of

the remaining design variables.

545

Entity: GWMCT

Entity Type: Relation

Description. Contains data required to interpret the DMVI unstructured entity for the pur-
pose of assembling the global mass matrix. The relation is sorted by DVID and
KSIL.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

DVI D Integer > 0 Design variable identification

KSIL Integer > 0 Internal id of grid or scalar point
connected to the design variable

MCODE Integer > 0 Codeword denoting the form in which the
DMVI data are stored

NODES Integer 0 < NODES 5 Number of nodes being processed with
20 this KSIL

iREC I > 0 Record number of DMVI entity where
data are stored

ASIL Ivector (20) List of associated SILS

ALPHA Real Exponential power associated with BAR
I element design variable

Created By: Module EMA1

Notes:
1. MCODE definitions:

= 1 Multiple associated grids with both extensional and rotational
degrees of freedom.

= 2 Column being assembled is a scalar point. Associated SILS
may or may not be scalar points.

= 3 Column being assembled is a grid point. At least one row is a
scalar point.

= 4 Only extensional degrees of freedom are included in the as-
sembly process.

2. The INFO array for this entity contains additional memory management allo-
cation data:
INFO(11) - The number of tuples connected to the zeroth design

variable.
INFO(12) - The maximum number of tuples connected to any one of

the remaining design variables.

546

Entity: GPFDATA

Entity Type: Relation

Description: Contains the grid point forces.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

BC Integer > 0 Boundary condition identification number

NITER Integer > 0 Iteration number for optimization

Discipline type

DISC Integei > 0 = 1 Statics = 5 Transient
= 2 Modes = 7 Buckling
= 3 Steady Aero = 8 Blast

SUBCASE I > Subcase identification number if (DISC = 1, 3,
u, 8) or Mode Number if (DISC = 2, 7)

EID Integer > 0 Element identification number

ETYPE Text(8) Element type (example: "BAR")

Complex output identifier
CMPLX Integer > 0 = 1 if real response quantities

= 2 if complex response quantities

SIL Integer > 0 Internal grid point identification number

Flag indicating the point is a grid point or a
FLAG Integer > 0 scalar point

RFORCE Real vector(6) Real parts of force cvnponents

I FORCE Real vector(6) Imaginary parts of force components

Created By: Module EDR

Notes:
1. Th:s relation is used by module OFPEDR for output printing and punching.
2. The FLAG equals 6 if the point is a grid point and equals 1 if a scalar point

and 0 if not in the g-set.

0
547

Entity: GPFELEM

Entity Type: Relation

Description: Contains the list of elements connected to structural nodes for which grid point
forces have been requested.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

Set identification number of GPFORCE prints ID Integer > 0reus
request

ETYPE Text(8) Element type (example: "BAR")

EID Integer > 0 Element identification number

NGRID Integer > 0 Number of grid points in the element for which
grid point forces are needed

AGRID Ivector (32) Array containing sorted list of GIDs

Created By: Module PFBULK

Notes:
1. SID refers to the GRIDLIST bulk data entry used in the GPFORCE Solution

Control print request id in Solution Control.

Entity: GPWGGRID

Entity Type: Relation

Description: Contains the definition of a location for grid point weight generation as input by
the GPWG data entry in the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION
GRIDPNT IGrid point identification or NULL if

T Integer explicit location is given

X0 Real x location of the point

YO Real y location of the point

zO Real z location of the point

Created By: Module IFP

Notes:
1. GRIDPNT and X0,Y0,Z0 are mutually exclusive mechanisms to enter a loca-

Licn
2. Only the first tuple of GPWGGRID will be used
3. If no tuples exist, tV-e GPWG is performed at the origin of the basic coordinate

system

548

SEntity: GRADIENT

Entity Type: Relation

Description: Contains the gradients of objective and constraint gradients requested to be
printed or punched.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION
PRINTKEY IKey value referred to by the CONST

K Integer relation

DVI D Integer Design variable identification number

Gradient value for the constraint inCONST with the associated PRINT KEY

Created By: Module DESIGN or VANGO

Notes:
1. This entity contains one tuple for every global design variable for each tuple

of CONST with a nonzero PRINTKEY attribute. That attribute points to the
associated tuples of this entity.

. Entity: GRAV

Entity TIype: Relation

Description: Contains the definition of the g-nvitv vectors to be used in applying gravity load-
ing to the model.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

CID1 | Integer >0 Coordinate system id
SCALE ! R,,al Scale factor

N1, N2, N3 Real Components of the gravity vector

Oreated By: Module fFP

549

Entity; GRID

Entity Type: Relation

Ddscription: Contains the geometric and permanent constraint data for a structural grid point
as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

GRI DID Integer > 0, key The external grid point id

CP Integer >0 The coordinate system in which the
location of th6 point is defined

X, Y, z Real The location of the grid point

The id of the coordinate system to be

CD Integer _0 used to define displacements,
constraints, degrees of freedom, and
solution vectors

PERMSPC 1O The permanent single point constraints
EInteger _0 associated with the grid point

Created By: Module IF?

Entity: GRIDLIST

Entity Type: Relation

Description: Contains the list of grid, scalar or extra points ior which node dependent outputs
are requested as input froma the Bulk Data file.

Relation Attributes:

NA•ME '_TYPE/KEY DESCRIPTION

SI D Integer Set identification number

GI| Integer External grid/scalar/extra point identiication

In t er number

Created By: Module IF?

550

, Entity: GRIDTEMP

Entity Type: Unstructured

Description: Contains temperature data for all grid and scalar points for all thermal load sets
defined.

Recui d:
1. A list of all set identification numbers in sorted order.
i. Contains the grid and scalar point temperatures for the (i-1)th specified ther-

mal load case. The storage order of temperature data within each record fol-
lows the ordering of KSIL values in the BGPDT table with extra points
excluded.

Created By. PFBULK

Notes:
1. This entity is used in EMG to compute average element temperatures and is

used in LODGEN to compute the global thermal load sensitivity vectors.

Endtty: GSKF

Entity Type: Matrix

Description: The transpose of GSTKF (see GSTKG).

Entity: GSTKF

Entity Type: Matrix

Description: A partition of the GSTKN matrix (see GSTKG)

Entity: GSTKG

Entity Type: Matrix

Description: The interpolation matrix relating slopes in the streamwise direction at the aero-
dynamic degrees of freedom to the displacements at the gl3bal structural degrees
of freedom.

Matrix Form: Avariable-sized matrix having one column for each steady aerodynamic box and
one row for each structural degree of freedom.

Created By: Module SPLINES

Notes:
1. The MAPOL sequence supports the following partitions of the GSTKG matrix

(see the Theoretical Manual for the explicit formation of these submatrices):

GSTKG - [GST]

GS=K -4 [GSTKPGSTF

GS•F = [GSTXF)T

551

Entity: GSTKN

Entity Type: Matrix

Description: A partition of the GSTKG matrix (see GSTKG).

Entity: GSUBO

Entity Type: Subscripted Matrix

Description: See Notes.

Matrix Form: A variable-sized matrix with one row for each omitted degree of freedom and one
column for each degree of freedom retained for analysis. The precision of this ma-
trix is the same as that of the KGG matrix.

Created By: MAPOL

Notes:
1. For Guyan reduction GSUBO contains the matrix product

- [ROO]-I [OA I

2. If no omitted degrees of freedom are defined for the model, GSUBO will be in-
itialized.

3. For generalized dynamic reduction, GSUBO relates degrees of freedom in the
f- to q- set (union of a-, k-, and j-sets) degrees of freedom.

Entity: GTKF

Entity Type: Matrix

Description: A partition of the GTKN matrix (see GTN.

Entity Type: Matrix

Description: The interpolation matrix relating the forces at the aerodynamic degrees of free-
dom to the forces at the global structural degrees of freedom.

Matrix Form: A variable-sized matrix having one column for each steady aerodynamic degree of
freedom (box) and one row for each structural degree of freedom.

Created By: Module SPLINES

Notes:
1. The MAPOL sequence creates the following partitions of the GTKG matrix

(see the Theoretical Manual for the explicit formation of these submatrices):

GING -4 [Gb]

GT3I -452

552

Entity: GT1N

Entity Type: Matrix

Description: A partition of the GTKG matrix (see GTKG).

Entity: GUST

Entity Type: Relation

Description: Contr-ins vertical gust data. for a gust analysis as input from the bulk data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SID Inteaer> 0 Gust set ID

GLOAD Integer >0 of an entry which defines time or frequency
dependent loads.

WG Real > 0.0 Scale factor for gust velocity

Xo Real > 0.0 Location of reference plane in aerodynamic
-_ _ coordinates

V Real > 0 Velocity of the vehicle
QDP Real > 0 Dynamic pressure of the vehicle
MACH i Real L 0.0 1 Mach number of the vehicleSYMXZ I Inee__ Sfagfq_fo :lane
SYMX I Symmetry flar for x-lane

Created By: Module IFP

Entity: IC

Entity Type: Relation

Description: Contains the values of initial displacements and velocities for use in direct tran-
sient response analysis as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer Set identification number

GRI D Integer Grid, scalar or extra point identification

GRID Integer number

COMP Integer Grid point component number

Uo Real Initial displacement value

vo Real Initial velocity value

Created By: Module IFP

553

Entity: ICDATA

Entity Type: Unstructured

Description: Contains the collection of initial condition data for all initial condition sets refer-
enced in Solution Control.

Entity Structure:
Record:

1. A list of all set identification numbers in sorted order.
i. Contains the initial conditions for the (i-l)th initial condition set. Each record

has the following form:

WORD VARIABLE DESCRIPTION

1 SID Set identification

j ROW Internal number of the degree of freedom affected
by the initial condition in increasirg Row order

For each degree of freedom two words are stored:
j+l toj+2 (1) initial displacement

L (2) initial velocity

Created By: PFBULK

Notes:
1. This entity is used in DMAto assemble the ICMATRIX entity for the bound-

ary condition.
2. The j index runs from 2 to 3 * NROW by 3 for each degree of freedom in the

model that has a nonzero initial condition.

Entity: IC14ATRIX

Entity Type: Matrix

Description: Contains the matrix of transient response initial conditions in the d-set for the
current boundary condition.

Matrix Form. A variable-sized rectangular matrix having one row for each degree of freedom in
the d-3et and two columns for each transient response subcase. The first column
is the vector of initial displacement and the second is the vector of initial velocity.

Created By: DMA

Notes:
1. This entity will be flushed for each boundary condition having dynamic re-

sponse disciplines.

5

554

.Entity: ID2

Entity Type: Matrix

Description: An identity matrix required in the MAPOL sequence associated with the nuclear
blast response.

Matrix Form: A 2 by 2 identity matrix.

Created By: Module BLASTFIT

Entity: IFM

Entity Type: Subscripted Matrix

Description: Intermediate matrix in the reduction of the mass matrix for unrestrained bound-
ary conditions.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the o-set
while the number of columns is equal to the number of degrees of freedom in the
a-set.

Created By: MAPOL

Notes:
1. If there are no aerodynamics, IFM is computed from MOO times GSUBO plus

MOA.
2. If there are aerodynamics, IFM is computed from MOO times GASUBO plus

MON.
3. Since IFM is required in the sensitivity analysis, it is subscripted by bound-

ary condition number.

Entity: IFR

Entity Type: Subscripted Matrix

Description: Intermediate matrix in the reduction of the mass matrix.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the 1-set
while the number of columns is equal to the number of degrees of freedom in the
r-set.

Created By: MAPOL

Notes:
1. IFR is computed as MLL times D plus MLR.
2. Since IFS is required in the sensitivity anaysis, it is subscripted by boundary

condition number.

555

Entity: IHEXIEST

Entity -'pe: Relation

Description. Contains the element summary data far the linear isoparametric hexahedron ele-
ment.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION
EID Integer> 0, key Element identification number

sI=, 8 Integer > 0 Internal grid points identification numbers
i=1, 2... _ _ _ __ _ _ __ _ _ _ _ _ _ _ _ _

COORDi I > External coordinate system identification
i=, 2... 8 nteger> number fvr displacements at S•Li

Xi Real
i=8, 2 ... 8

y .. Real Basic coordinates of SILi
i=1, 2 ... 8

Z 1 2 Real
i=1, 2 ... 8

MID Integer > 0 Material identification number

SIDCoordinate system identification number
Sinteger >0in which anisotropic material is defined.

NIP Number of integration points in each
Sngecoordinate direction

AR Real _ Maximum aspect ratio of element

ALFA Realf Ma&imum angle (degrees) for face normals

ETA MaRimuea angle (degrees) for mid-edge
_ pointzs

Created By: Module MAXEST

Notes:
1. This relation is built from the CIHEX, the PIHEX and tbe basic grid point re-

lations. It contains one tuple for each linear isoparametric hexanedron ele-
ment in the problem.

556

Entity: IHEX2EST

Entity Type: Relation

Description- Contains the element summary data for the quadratic isoparametric hexahedron
element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, kay Element identification number
SILS I (20) Internal grid point identification

SIvctor (2numbers
COORDj External coordinate system

i=1, 2... 20 Integer > 0 identification number for
i 2 2displacements at SILSi

xi=,2... 20 Rvector (3) Basic coordinates of SILSi

MID Integer > 0 Material identification number

Coordinate system identification
CID Integer > 0 number in which anisotropic material

is defined
NIP = Number of integration points in each

Integer 2,3,4 coordinate direction

AR Aeal Maximum aspect ratio of element

ALFA Real Maximum angle (degrees) for face
normals

BETA Real Maximum angle (degrees) for mid-edge
points

Created By: Module MAKEST

Notes:
1. This relation is built from the CIHEX, the PIHEX, and the basic grid point re-

lations. It contains one tuple for each quadratic isoparametric hexahedron
element in the problem.

557

Entity: IHEX3EST

Entity Type: Relation

Description: Contains the element summary data for the cubic isoparametric hexahedron ele-
ment.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EI D Integer > 0, key Element identification number

SILS Ivector (32) Internal grid point identification
numbers

COORD1 External coordinate systemi=1, 2...32 Integer> 0 identification number for
displacements at SILSi

xl
i=1,2... 32 Rvector (3) Basic coordinates of SILSi

MID Integer > 0 Material identification number

Coordinate system identification
CID Integer > 0 number in which anisotropic material

is defined

Number of integration points in eachNIP Integer coordinate direction

AR Real Maximum aspect ratio of element

ALFA Real Maximum angle (degrees) for face
normals

BETA Real Maximum angle (degrees) for mid. edge
points

Created By: Module MAKEST

Notes:
1. This relation is built from the CIHEX, the PIHEX, and the basic grid point re-

lations. It contains one tuple for each quadratic isoparametric hexahedron
element.

558

Entity: ITERLIST

Entity Type: Relation

Description: Contains the definition of the list of design iterations as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETI D Integer Set identification number

NITER Integer Design iteration number

Created By: Module IFP

559

Entity: JOB

Entity Tyrpe: Relation

Description: Contains the case-independent solution control parameters as input in the solu-
tion control packet.

Relation Attributes:

NAME TYPE/KE DESCRIPTION

Airfoil shape print selection
WORD 1 Print set identification number > 0, or

= 0 NONE
= -1 ALL
=-2 LAST

WORD 2 Punch set identification number
WORD 3 Print form

Integer = 0 Rectangular
AIRFRNT ecto 1 Polarvector WORD 4 Punch form

(12) WORD 5 Print frequency set identification number

WORD 6 Punch frequency set identification number
WORD 7 Print iteration set identification number
WORD 8 Punch iteration set identification number
WORD 9 Print mode set identification number
WORD 10 Punch maode set identification number
WORD 11 Print time set identification number
WORD 12 Punch time set identification number

Integer
PLA1PRNT vector Planfcrm print selecticn

(12) ,

Integer Unit pr.-ssure coefficient print selection
PRESPRNT vector

(12)

TITLE Text (72) User label TITLE

SUBTITLE Text (72) User label SUBTITLE

LABEL Text (72) User label LABEL

Created By: Module Solution

Notes:
1. Phe format of the AIRFPRNT vector is typical of the format of all the print se-

lection vectors. Additionally, the format for the print set Identification num-
ber in the AIRFPRNT vector is typical of that of the other set Identification
numbers in the vector.

2. The CASE, JOB and OPTIMIZE relation entities together contain the solu-
tion control requests as input in the solution control packet. CASE contains
the case-dependent parameters, JOB contains the case-independent requests
and OPTIMIZE contains the optimization-dependent requests.

560

. Entity: JSET

Entity Type: Relation

Description: Contains the external grid identification numbers and components with the
analysis set as defined on the JSET entries of the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 JSET identification number

GRID1 Integer > 0 Grid or Scalar point id

Component number:
COMPNTS Integer > 0 = 0 for scalar points

= 1-6 for grid points

Created By: Module IFP

Notes:
1. Used by the MKUSET Module to build the USET relation.

Entity: JSET1

Entity: Relation

S Description: Contains the external grid identification numbers and components associated
with the analysis set as defined on the JSET1 entries of the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 JSET identification number

Component number:
COMPNTS Integer > 0 = 0 for scalar points

= 1-6 for grid points

GRIDI Integer > 0 Grid or Scalar point id

Created By: Module IFP

Notes:
1. Used by the MUSET Module to build the USET relation.

Entity:, KAA

Entity Type: Matrix

Description: Partition of the KFF matrix (see KGG).

561

Entity: KAAA

Entity Type: Matrix

Description: Partition of the KAFF matrix (see KAFF).

Entity: KAFF

Entity Type: Matrix

Description: Contains the stiffness matrix for the free degrees of freedom in the current bound-
ary condition including the aeroelastic terms.

Matrix Form: A variable-sized asymmetric matrix having one row and one column for each free
degree of freedom in the current boundary condition.

Created By: MAPOL

Notes:
1. The matrix is formed using

[fZFF] = [1KAET - I[AMCS]

2. The MAPOL sequence supports the following partitions of the KAFF matrix
(see the Theoretical Manual for the explicit formation of these submatrices):

KAAA - []

Entity: KALL

Entity Type: Matrix

Description: Partition of the KAAA matrix (see KAFF).

Entity: KALR

Entity Type: Matrix

Description: Partition of the KAAA matrix (see KAFF).

Entity: KAO

Entity Type: Matrix

Description: Partition of the KAFF matrix (see KAFF).

Entity: KARL

Entity Type: Matrix

Description: Partition of the KAAA matrix (see KAFF).

562

O Entity: KARR

Entity Type: Matrix

Description: Partition of the KAAA matrix (see KAFF).

Entity: KDDF

Entity Type: Matrix

Description: Stiffness 'matrix in the direct set used in frequency response analysis.

Matrix Form: Complex square matrix with the number of rows and columns equal to the num-
ber of degrees of freedom in the d-set.Created By:
DMA

Entity: KDDT

Entity Type: Matrix

Description: Stiffness matrix in the direct set used in frequency response analysis.

Matrix Form: Complex square matrix with the number of rows and columns equal to the num-
ber of degrees of freedom in the d-set.Created By:
DMA

Entity: KEE

Entity Type: Matrix

Description: A partition of the GENK matrix that contains only elastic degrees of freedom.
Used in the nuclear blast response analysis.

Matrix Form: Complex square matrix with the number of rows and columns equal to the num-
ber of elastic modes retained for the blast analysis.

Created By: MAPOL

563

Entity: KEU.

Entity Type: Unstructured

Description: Contains the element stiffness matrix partitions.

Entity Structure:

Record:
i. If the element is a scalar element:

the record contains the components of the connected grid point(s) (if
any) and the value K.

KCODE FORMAT OF RECORD

1 K

2 COMP1, 0, +-K, -+K

3 0, COMP1, +-K, -+K

4 +-K, -+K

5 COMPI, 0, K

6 COMP1, COMP2, +-K-, -+K

Else
the record contains a partition of the stiffness matrix with either 1, 3,
or 6 entries for each node

KCODE FORMAT OF RECORD

7 3 columns of 3 entries/node

8 I columns of 3 entries/node

6 columns of 6 entreis/node

Created By: Module EMG

Notes:
1. This entity contains one record for each strip of each element stiffitess matrix.

A strip or partition is defined as all those columns of the element matrix asso-
ciated with a pivot sil (the id of the first DOF of a grid point or the id of a sca-
lar point).

2. Refer to the DVCT relation for further details, as these two data base entities
are closely linked.

3. The matrix partitions are stored in the same precision as the KGG matrix.

vv_

. Entity: KEQE

Entity TIype: Matrix

Description: Structural plus aerodynamic stiffness matrix for the elastic modes retained in the
blast response analysis.

Matrix Form: Complex square matrix with the number of rows and columns equal to the num-
ber of elastic modes retained for the blast analysis.

Created By: MAPOL

Notes:
1. KEQE is obtained from [KEQE] = [KZE] + [QEE]

Entity: KFF

Entity Type: Matrix

Description: Partition of the KNMIT matrix (see KGG).

Entity: KFS

Entity Type: Matrix

Description: Partition of the KNN matrix (see KGG).

Entity: KGG

Entity Type: Matrix

Description: Contains the current global stiffness matrix for t-he design problem.
Matrix Form: A variable-size symmetric matrix having one row and one column for each struc-

tural degree of freedom in the problem.

Created By: Module MAPOL

Notes:
1. The KGG matrix is formed in the second phase stiffness matrix assembly.
2. The MAPOL sequence supports the following partitions of the KGG matrix

(see the Theoretical Manual for the explicit formation of these submatrices):

XF7 OO*I KOA*1

m AA -4 [1 1 , 1 1]

* Generalized dynamic reduction only

565

Entity: KHHF

Entity Type: Subscripted Matrix

Description: Stiffness matrix in the modal set used in frequency response and flutter analyses.

Matrix Form: Complex square matrix with the number of rows and columni.s equal to the nun_-
ber of degrees of freedom in the h-set.

Created By: DMA

Notes:
1. The matrix may be required in the flutter sens'tivity arialysis and is therefore

subscripted by boundary condition.

Entity: KHHT

Entit Type: Subscripted Matrix

Description: Stiffness matrix in the moloial set used in transient response analysis.

Matrix Form: Comp'e. squ ire matrix with the number of rows and columns equal to the num-
ber of degrees of freedom in the h-eet.

Created By: DMA

Entity: KLL

Entity Type: Matrix

Description: Partition of tf.. KAA matrix (see KGG).

Entity: KLLINV

Entity Type: Subscript'.d Matrix

Description: Contains the upper and lower triangular seecdons of the [KLL] symmetric stiff-
ness matr.

Matrix Form: A variable-L- zi matrix having one row and one column for each degree of free-
dom left over ýIr analysis ,oer partition/reduction. The precision of this matrix
is the same as the KGG matrix.

Created By: SDCOMP

Notes:
1. This matrix is formed for use by the FBS utility.

566

Entity: 1rLLL

Enti'y Type: Matrix

Description: Contains the lower triangular portion of the decomposed KAAA matrix. Note
that RAAA is asymmetric requiring use of the general decimposition routine.

Matrix Form: Refer to the DECOMP utility documentation.

Created By: DECOMP

Note,:
1. This matrix is formed to be used in the general forward backward substitu-

tion module GFBS.

Entity: KLLU

Entity Type: Matrix

Description: Contains the upper triangular portion of the decomposed partition of the KAAA
matrix. Note that KAAA is asymmetric requiring use of the general decomposi-
tion routine.

Matrix Form: Refer to the DECOMP utility documentation.

Created By: DECOMP

Notes-
1. This matrix is forraed to be used in the general forward backward substitu-

tion moeuie Gr-BS,

Entity: KLR

Entity Type: Matrix

Description: A partition of the KAA mat-ix (see KGG).

Entity: KL11

Entity Type: Subscripted Matrix

Description: Lower triangular portion of the decomposed Kll matrix.

Matrix Form: Square real matrix having one row and one column for each a-set degree of free-
dom.

Created By: DECOMP

Notes:
1. K11 is not symmetric.
2. This matrix is formed for use by the GFBS utility.
3. The matrix may be required in the sensitivity analysis and is therefore sub-

scripted by boundary condition.

567

Entity: KNN

Entity Type: Matrix

Description: A partition of the KGG matrix (see KGG).

Entity: KOA

Entity Type: Matrix

Description: A partition of the KFF matrix used in Generalized Dynamic reduction.

Matrix Form: Real rectangular matrix iitb one row for each 3-set degree of freedom and one
column for each a-set degree of freedom.

Created By: PARTN

Notes:
1. This matrix is required only for generalized dynamic reduction and only

when the user has specified a-set degrees of fTeedom.

Entity: KOO

Entity Type: Matrix

Description: A partition of the KFF matrix used in Generalized Dynamic reduction.

Matrix Form: Real squar matrix with one row for each o-set degree of freedom.

Created By: PARTN

Notes:
1. This matrix is required only for generalized dynamic reduction.

2.
If the user has not specified a-set degrees of freedom, KOO is equivalented to
KFF.

Entity: KOOINV

Entity Type- Subscripted Matrix

Description: Contains the upper and lower triangular matrices resulting from the symmetric
decomposition of the KOO matrix for the current boundary condition.

Matrix Form: A variable-sized matrix having one row and one column for each omitted degr'ee
of freedom in th6 boundary condition.

Created By: FREDUCE

Notes:
1. This matrix has the same precision as the global stiffness matrix.
2. If no degrees of freedom have been omitted in the current boundary condition,

this nmatrix will have no rows or columns.
3. This indtrx is formed for use by the Forward Backward Substitution Utility.
4. Not,; ,that KOOINV plays the same role as KOOL/KOOU for symmetric analy-

ses.

4
568

O Entity: KOOL

Entity Type: Subscripted Matrix

Description: Contains the lower triangular portion of the decomposed partition of the KAAA
matrix. Note that KAAA is asymmetric requiring use of the general decomposi-
tion routine.

Matrix Form: Refer to the DECOMP utility documentation.

Created By: FREDUCE

Notes:
1. This matrix is formed to be used in the general forward backward substitu-

tion module GFBS.
2. Note that KOOL/KOOU play the same role as KOOINV for asymmetric analy-

ses.

Entity: KOOU

Entity Type: Subscripted Matrix

Description: Contains the upper triangular portion of the decomposed partition of the KAAA
matrix. Note that KAAA is asymmetric requiring use of the general decomposi-
tion routine.

Matrix Form: Refer to the DECOMP utility documentation.

Created By: Module DECOMP

Notes:
1. This matrix is formed to be used in the general forward backward substitu-

tion module GFBS.
2. Note that KOOL/KOOU play the same role as KOOINV for asymmetric analy-

ses.

Entity: KSOO

Entity Type: Motrix

Description: Shifted stiffness matrix used in Generalized Dynamic reduction.

Matrix Form: Real square symmetric matrix with one row and one column for each o-set of de-
gree of freedom.

Created By: Module GDR1

Notes:
1. This matrix is computed from: [KSOO] = ! KOO -I (s) [MOO];

with the snift parameter, s, computed in GRDI.

Entity: KSS

Entity Type: Matrix

Description: Partition of the KNN matrix (see KGG).

569

Entity: KU1l1

Entity Type: Subscripted Matrix

Description: Upper triangular portion of the decomposed K11 matrix.

Matrix Form: Square real matrix having one row and one column for each a-set degree of free-
dom.

Created By: DECOMP

Notes:
1. K11 is not symmetric.
2. This matrix is formed for use by the GFBS utility.
3. The matrix may be required in the sensitivity analysis and is therefore sub-

scripted by boundary condition.

Entity: Kit

Entity Type: Matrix

Description: An intermediate matrix that is constructed as part of the solution of unrestrained
structures.

Matrix Form: A real, square matrix with the number of rows and columns equal to the number
of a-set degrees of freedom.Created By:
MAPOL

Entity: K1112

Entity Type: Subscripted Matrix

Description: An intermediate matrix required in the static aeroelastic trim analysis.

Matrix Form: A real rectangular matrix with the number of ro% s equal to the number of a-set
degrees of freedom and the number of columns equal to the number of r-set de-
grees of freedom.

Created By: MAPOL

Notes:
1. The K1112 matrix is computed as the solution of

[Xl] *,[112 I = [-ATCS]

2. The matrix may be required in the sensitivity analysis and is therefore sub-
scripted by boundary condition.

570

. Entity: K12

Entity Type: Subscripted Matrix

Description: An intermediate ;matrix that is constructed as part of the solution of unrestrained
structures.

Matrix Form: A real Yectangular matrix with the aumber of rows equal to the number of a-set
degrees of freedom and the number of columns equal to the number of i-set de-
grec.i of freedom.

Created By: MAPOL

Notes:
1. The matrix may be required in the sensitivity analysis and is therefore sub-

scripted by boundary condition.

Entity: K21

Entity Type: Subscripted Matrix

Description: An intermediate matrix used in the reduction of the aerodynamic stiffness.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the r-set and
the number of columns is equal to the number of rows in the a-Get.

Created By: MAPOL

Notes:
1. The matrix is created from the column merge of R32 and R31.
2. Since this matrix is required in the sensitivity analysis, it is subscripted by

the boundary rondition number.

571

Entity: LAMBDA

Entity Type: Relation

Description: Contains the results of real eigenvalue analysis 1or each modal analysis in each
boundary condition.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION,

NITER Integer Iteration number

BCID Integer The boundary condition number

MODENO Integer The mode number of the
eigenvalue/eigenvoctor

EXORD Integer The extraction order for the mode

EIGVAL Real The eigenvalue

RFREQ Real The modal frequency in Ta6/s

CFREQ - Real The modal frequency in Hertz
vECFLG = 1 if a vector wail generated for the mode

1.nLCFLG -nteger = 0 if only the value was extracted

GVASS Real The generalized mass associated with the
__ _ mode

GSTIFF Real The generalized stiffness associated with
_. the -node

Created By: Module REIG

Notes:
1. The relation contains one tuple for each mode extracted in each eigenanalysis.
2. All eigen-alues for all boundary conditions at each design iteration are stored

for retrieval in sensitivity evaluation.

572

Entity: 1AMDAC

Entity Type: Relation

Description: Contains the results of complex eigenvalue analysis for each modal analysis in
each boundary condition.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

BCID Integer The boundary condition number

The mode number of the
MODEaNO Integer eigenvalue/eigenvector

EXORD Integer The extraction order for the mode

REIGVAL Real The real part of the eigenvalue

IEIGVAL Real The imaginary part of the eigenvalue

NFREQ Real The natural frequency in Hertz

DFREQ Real The damped frequency in Hertz

DPCOEF Real The damping coefficient

Created By: Module CEIG. Notes:
1. The relation contains one tuple for each mode extracted in each eigenanalysis.

Entity: LDVLIST

Entity Type: Relation

Description: Contains the definition of the list of local design iterations as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer Set identification number

ETYPE Text(8) Element type

LAYRNUM Integer Layer number for composites or zero

EID Integer Element identification number

Created By: Module IFP

573

Entity: LHS

Entity Type: Subscripted Matrix

Description: This is essentially a matrix of rigid body mass values with the exact definition de-
pending on the type of free-free analysis being performed.

Matrix Form: The dimension of the square matrix is equal to the number of degrees of freedom
in the r-set.

Created By: MAPOL

Notes:
1. For an inertia relief analysis, LHS is equal to MRR.
2. For a static aeroelastic analysis, LHS is equal to MRR plus K21 times K1112.

Entity: LKQ

Entity Type: Matrix

Description: Lower triangular portion of the decomposed KEQE matrix.

Matrix Form: Square real matrix having one row and one column for each elastic mode retained
in the nuclear blast response analysis.

Created By: DECOMP

Notes:
1. KEQE is not symmetric.
2. This matrix is formed for use by the GFBS utility.

Entity: LOAD

Entity Type: Relation

Description: Contains the definition of a static load that is a linear combination of loads de-
fined by FORCE, MOMENT, FORCE1, MOMENT1, PLOAD, and GRAV entries.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

SCALE Real Scale factor for combination

SCALEI Real Scale factor for component load

Set identification number of the component
LOADI Integer > 0 load

Created By: Module IFP

Notes:
1. The relation contains one tuple for each load set id specified in each unique

SETID.

574

O Entity: LOCLVAR

Entity Type: Relation

Description: Conteins the relationship between local variables and geobal variables in the de-
sign problenm. Acts as a pointer to the PTRANS matrix.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification

ETYPE1 Text (8) Element type

LAflNMUM Integer >_ Layer number for composites

PROW Integer > 0 Pointer to (P) row for this element
PTYP Int = 1, 2 or 3 Flag indicating type of associated global

nteger variable

TMIN Real Minimum value for physical property

TMAX Real Maximum value for physical property

Created By: Module MAKEST

Notes:
1. This entity is used to create move limits on the physical design variables in

the TCEVAL module.
2. The PTYP attribute indicates the linking option for the physical variable

= 1 unique physical linking (DESELM)
= 2 physical linking (DESVARP)
= 3 shape function linking (DESVARS)

Entity: LSOO

Entity Type: Matrix

Description: Lower triangular portion of the decomposed KSOO matrix.

Matrix Form: Square real matrix having one row and column for each o-set degree of freedom
in Generalized Dynamic Reduction.

Created By: DECOMP

Notes:
1. This matrix is formed for use by the FBS large matrix utility.
2. LSOQ is computed only when there are k-set degrees of freedom in a general-

ized dynamic reduction analysis.

Entity: MAA

Entity Type: Matrix

Description: Mass matrix in the a-set derived from partitions of the MFF matrix (see MGG).

0

575

Entity: MAABAR

Entity Type: Matrix

Description: A partition of the MFF matrix (see MGG).

Entity: MASSE ST

Entity Type: Relation

Description: Contains the element summary data for the MASS1 and MASS2 elements.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

EID Integer > 0, key Element identification number

SILl Integer >0 Internal grid or ccalar point id

SIL2 Integer >0 Internal grid or scalar point id
COMPNT1 Integer>0 Component of SILl to which the element is

In attached

COMPNT2 Integer Žt 0 Component of SIL2 to which the element is
attached

MASS Real Mass value

DESIGN Integer > 0 Design flag

Created By: Module MAKEST

Notes:
1. A nonzero design flag denotes that the element is affected by a design vari-

able.
2. This relation is built from the CMASS1 and CMASS2 relations along with as-

sociated property, design and grid relations. It contains one tuple for each
scalar mass element in the problem.

Entity: MATSS

Entity Type: Matrix

Description: Matrix of steady-state influence coefficients used in the nuclear blast response
analysis.

Matrix Form: Real square matrix with one row and column for each panel in the unsteady aero-
dynamics model.

Created By: Module BLASTFIT

E
576

O Entity: MATTR

Entity Type: Matrix

Description: Matrix of transient influence coefficients used in the nuclear blast response analy-
sis.

Matrix Form: Real rectangular matrix with one row for each panel in the unsteady aerodynam-
ics model and a column dimension equal to the number of panels times the num-
ber of beta values used in fitting procedure of the transient blast response
calculations.

Created By: Module BLASTFIT

Entity: MAT1

Entity Type: Relation

Description: Contains the material propertiis f',r linear isotropic materials as input from the
Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION
MID Integer > 0, key Material property identification

E Real Young's Modulus

Real Shear Modulus

NU Real Poisson's Ratio

RHO Real Density

ALPHA Real Thermal expansion coefficient

TREF Real Thermal expansion reference temperature

DAMPING Real Structural damping coefficient

ST Real Tension stress allowable

Sc Real Compression stress allowable

SS Real Shear stress allowable

MSCID Integer >0 Material coordinate system id

Created By: Module IFP

577

Entity: MAT2

Entity Type: Relation

Description: Contains the material properties for linear anisotropic materials for two-dimen-
sional elements as input from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

MID Integer > 0, key Material identification number

Gil, G12, G13 Real Components of the 6 x 6 symettric

G22, G23, G33 Real material properties matrix

RHO Real Density

ALPHI Real

ALPH2 Real Thermal expansion coefficient vector

ALPH12 I Real

TREF Real Thermal expansion reference
_ _ _ _temperature

DAMPING Real Structural damping coefficient

ST Real Tension stress allowable

Sc Real Compression stress allowable

Ss Real Shear stress allowable

MSCI __ Integer _Ž 0 Material coordinate system id

Created By: Module 1I'

I7

57•

, Entity: MA.T8

Entity Type: Relation

Description: Contains the material properties for orthotropic materials for two-dim~iensional
elements as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

MID Integer > 0, key Material identification number

El Real • 0.0 Logitudinal modulus of elasticity

E2 Real • 0.0 Transverse modulus of elasticity

NU12 Real Poisson's ratio

G12 Real > 0.0 In-plane shear modulus

GlZ Real > 0.0 Transverse shear modulus in 1-z plane

G2Z Real -0.0 Transverse shear modulus in 2-z plane

RHO Real >0.0 Mass density

ALPH1 Real Thermal expansion coefficient in 1-direction

ALPH2 Real Thermal expansion co6fflIrient in 2-direction

TREF Real Element reference temperature

XT Real Ž0.0 Allowable longitudinal tension stress

xC Real Allowable longitudinal compression stress

YT Real Ž0.0 Allowable transverse tension stress

YC Real Allowable transverse compression stress

SS Real >0.0 Allowable in-plane shear stress

DAMPING Real SIt0F1 .. ,oain. v•.ri,, wl __u _

F12 "ý IF --ater

Created By: Module TP

579

Entity: MAT9

Entity Type: Relation

Description: Contains the material properties for orthotropic materials for three-dirnei_-ional
elements as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

MID Integer > 0, key Material identification number

G11 Real Tensile modulus in the 1-direction

G12 Real Shear modulus in the 1-2 plane

G13 Real Shear modulus in the 1-3 plane

G14 Real Shear modulus in the 1-4 plane

G15 Real Shear modulus in the 1-5 plane

G16 Real Shear modulus in the 1-6 plane

G22 Real Tensile modulus in the 2-direction

G23 Real Shear modulus in the 2-3 plane

G24 Real Shear modulus in the 2-4 plane

G25 Real Shear modulus in the 2-5 plane

G26 Real Shear modulus in the 2-6 plane

G33 Real Tensile modulus in the 3-direction

G34 Real Shear modulus in the 3-4 plane

G35 Real Shear modulus in the 3-5 plane

G36 Real Shear modulus in the 3-6 plane

G44 Real Tensile modulus in the 4-direction

G45 Real Shear modulus in the 4-5 plane

G46 Real Shear modulus in the 4-6 plane

G55 Real Tensile modulus in the 5-direction

G56 Real Shear modulus in the 5-6 plane

G66 Real Tensile modulus in the 6-direction

RHO Real Mass Density

ALPHI Real Thermal expansion coefficient in 1-direction

ALPH2 Real Thermal expansion coefficient in 2-direction

ALPH3 Real Thermal expansion coefficient in 3-direction

ALPH4 Real Thermal expansion coefficient in 4-direction

ALPH5 Real Thermal expansion coefficienit in 5-direction

580

INAME TYPE/KEY DESCRIPTION

A 1, 1",i•,: Real Thermal expansion coefficient in 6-direction

SReal Element reference temperature

L GEE Real Structural damping coefficient

Created By: Mod.ule l

Entity: MDD

Entity Type: Matrix

Descriptioxr Mass matrix in the direct set.

Matrix Form: Square matrix with the number of rows and columns equal to the number of de-
grees of freedom in the d- set.

Created By: DMA

581

Entity: HE il

Entity Type: Unstructured

Description: An unstructured database entity that contains the element mass matrix v' Irti-
tions.

Entity Structure:

Record:
i. If the element is a scalar element:

the record contains the components of the connected grid point(s) (if
any) and the value M.

MCODE FORMAT OF RECORD

1 M

2 COMP1, 0, +-M,-+M
0,COMP1, +-M,-+M

4O+-M,--,-M

5 I COMPI, 0, M

6 COMP1, COMP2, +-M,-+M

Else
the record contains a partition of the stiffness matrix with either one,
three, or six entries for each node

KCODE FORMAT OF RECORD

7 3 columns of 3 entries/node

10 3 columns of 1 entry/node (diagonal)

Created By: Module EMG

Notes:
1. This entity contains one record for each strip of each element mass matrix. A

strip or partition is defined as all those columns of the element matrix associ-
ated with a pivot sil (the id of the first dof of a grid point or the id of a scalar
point).

2. Refer to the DVCT relation for further details, as these two database entities
are closely linked.

3. The matrix partitions are stored in the same precision as the MGG matrix.

582

Entity: MFF

Entity Type: Matrix

Description: A partition of the MNN matrix (see MGG).

Entity: MFORM

Entity Type: Relation

Description: Contains the mass matrix form as specified in the Bulk Data file.

Relation Attributes:

NAMES TYPE/KEY DESCRIPTION

VALUE Tt The mass matrix form; either LUMPED or
COUPLE D.

Notes:
1. If this relation is empty, the LUMPED form will be used. If more than one tu-

ple is defined, any tuple containing the "COUPLED" option will cause the cou-
pled mass form to be ased.

Entity: MGG

Entity Type: Mattix

Description: Contains the current global mass matrix for the design problem.

Matrix Form, A -iriable-size sinmmetriec (possibly diagonal) matrix having one row and one col-
umn for each sttuctural degree of freedom in the problem.

Created By: Module MAPOL

Notes:
1. The MGC, motrix is firmed in the second phase mass matrix assembly.
2. The MAPOL requence supports the following partitions of the MGG matrix

(see Theoretical Manual for the explicit formation of these matrices):

MG~~ I~MNNJ
9 I9

F
oo I NM~ 1

Ag F mm i 1P

583

Entity: MHH

Entity Type: Subscripted Matrix

Description: Contains the modal mass output from the dynamic matrix assembly.

Matrix Form: A variable-sized matrix having one row and one column for each eigenvector com-
puted in the real eigenanalysis.

Created By: Module DMA

Notes:
1. This matrix is needed for flutter constraint sensitivities so it is subscripted

for each boundary condition.
2. INFO(11) contains a flag denoting whether the matrix is coupled or uncoupled

= 0 Uncoupled
= 1 Coupled

Entity: MII

Entity Type: Matrix

Description: Generalized mass matrix computed by the eigenanalysis module.

Matrix Form: Square diagonal matrix with the number of rows and columns equal to the num-
ber of modes retained by the eigenanalysis.

Created By: Module REIG

Notes:
1. Currently, this matrix is computed and not used; it is available for printout.

584

. Entity: MKAERO1

Entity Type: Relation

Description: Contains a table of Mach numbers and reduced frequencies for unsteady aerody-
namic matrix calculation as input from the bulk data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SYMXZ Integer Symmetry flag for xz-plane

SYMXY Integer Symmetry flag for xy-plane

MACH1 Real

MACH2 Real

MACH3 Real Mach number

MACH4 Real

MACH5 Real

MACH6 Real

RFREQ1 Real

RFREQ2 Real

RFREQ3 Real

RFREQ4 Real Reduced frequencies

RFREQ5 Real

RFREQ6 Real

RFREQ7 Real

RFREQ8 Real

Created By: Module IFP

585

Entity: MKAERO2

Entity Type: Relation

Description: Contains mach number and reduced frequency pairs to be used in unsteady aero-
dynamic matrix generation.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SYMXZ Integer Symmetry flag for xz-plane

SYMXY Integer Symmetry flag for xy-plane

MACH Real > 0.0 Mach number

RFREQ Real Ž 0.0 Reduced frequency

Created By: Module IFP

Entity: MLL

Entity Type: Matrix

Description: A partition of the MAkA matrix (see MGG).

Entity: MLR

Entity Type: Matrix

Description: A partition of the MAA matrix (see MGG).

Entity:

Entity Type: Matrix

Description: The mass matrix in the n-set derived f-rom partition of the MGG matrix (see
MGG).

Entity: MOA

Entity Type: Matrix

Description: A partition of the MFF matrix (see MGG).

586

Entity: MODELIST

Entity Type: Relation

Description: Contains the list of normal modes for which outputs are requested as input from
the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SID Integer Set identification number

MODE Integer Mode number

Created By: module IFP

Entity: MOMENT

Entity Type: Relation

Description: Contains the definition of a static moment at a grid point as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

GRID1 Integer > 0 Grid point at which the moment is applied

CI D1 Integer >0 Coordinate system identification

SCALE Real Scale factor

N1, N2, N3 Real Components of the vector

Created By: Module IFP

587

Entity: MOMENT1

Entity Type: Relation

Description: Contains the definition of a moment applied at a grid point with the direction de-
termined by a line connecting two grid points.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

GRID1 Integer > 0 Grid point id at which the moment is applied

SCALE Real Scale factor

GRI D2 Integer > 0 Grid point identification

GRID3 Integer > 0 Grid point identification

Created By: Module IFP

Entity: MOO

Entity Type: Matrix

Description: A partition of the MFF matrix (see MGG).

Entity: MPART

Entity Type: Matrix

Description: A partitioning vector used to separate rigid body and elastic modes for nuclear
blast response.

Matrix Form: A real vector with the number of rows equal to the number of modes retained for
the nuclear blast response. Rigid modes are denoted by 0.0 while elastic modes
are denoted by 1.0.

Created By: Module BLASTFIT

588

. Entity: MPC

Entity Type: Relation

Description: Contains the multipoint constraint data as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DFSCRIPTION

SETID Integer > 0 Set identification number

DEPEND Integer > 0 Dependent grid or scalar point id

COMPNT1 Integer >0 Component of DEPEND that is constrained

DEPCOEF Real Coefficient of constraint for the dependent dof

GRID2 Integer > 0 Grid or scalar point idI COMPNT2 Integer > 0 Component of GRID1 that specifies a constraint

MPCCOEF Real Coefficient of constraint

Created By: Module IFP

Notes:
1. The relation contains one tuple for each component constrained in each

unique SETID.

O Entity: MPCADD

Entity Type: Relation

Description: Contains the definition of a multipoint constraint set that is a union of sets con-
tained in the MPC relation.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Set identification number

Integer > The SETID of the MPC relation tuples to be
used

Created By: Module IFP

589

Entity: MPPARM

Entity Type: Realtion

Description: Contains the optimizer parameters and their new values for use in the ASTROS
mathematical programming opti-nizer as input from the Bulk Data File.

NAME TYPEIKEY DESCRIPTION

PARAM Text (8) Name of the parameter

INTPARM Integer Value of integer parameters

RS PPAM j Real Value of real parameters

Created By: Module IFP

Notes:
1. This relation is used in module DESIGN to provide for user specification of

optimizer parameters.

Entity: MRR

Entity Type: Subscripted Matrix

Description: To reduce mass matrix for the structural model.

Matrix Form: A variable-sized matrix having one row and one column for each degree of free-
dom in the support set for the current boundary condition.

Created By: MAPOL

Notes:
1. This matrix is required to compute strength constraint sensitivities for unre-

strained structures and trim parameter sensitivities for steady aerolastic opti-
mization so it is subscripted for each boundary condition.

Entity: NIRRBAR

Entity Type: Matrix

Description: A partition of the MAA matrix (see MGG).

590

. Entity: OAGRDDSP

Entity Type: Relation

Description: Contains the displacements on the aerodynamic boxes ("grids") for static aeroelas-
ticity, flutter, transient/gust and blast disciplines that are requested for print or
punch in Solution Control.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

NITER Integer Iteration number

BCID Integer The boundary condition number

DISC Integer Discipline type flag from CASE

SUBCASE Integer Subcase identification number from CASE
relation

MODENO Integer Normal mode number for FLUTTER

Real or complex flag
CMPLX Integer = 1 if real displacement

= 2 if complex displacement

External identification number of theEXT ID Integer aerodynamic box (See Remark 1)

SINTID Integer Internal identification number of theaerodynamic box

RDISP Real Real part of the normal displacement

IDISP Real Imaginary part of the normal displacement

Created By: Many Modules

Notes:
1. The "grids" referred to by the EXTID are actually the aerodynamic box ele-

ments. Etch of these elements is physically located at the centroid of a quadri-
lateral or triangular plate (the location of which is stored in GEOMSA or
GEOMUA depending on the model).

2. The DISC flag also indicates which model is referred to by the results:
SAERO refers to the planar static aero model
FLUTTER, TRANSIENT, FREQUENCY and BLAST refer to the unsteady
aero model

591

Entity: OAGRDLOD

Entity Type: Relation

Desc-iption: Contains the trimmed applied steady aerodynamic forces and pressures on the
planar and nonplanar static aerodynamic boxes ("grids"' that are requested for
print or punch in Solution Control.

Relation Attribute,:

NAME TYPE/KEY DESCRIPTION

NITER Integer Iteration number

BCID Integer The boundary condition number

DISC Integer Discipline type flag from CASE

SUBCASE Integer Subcase identification number (Normal
S__BAS _ __ngrmode number for FLUTTER)

LOADTYPE 7bxt(8) Label identifying the type of the load (See
_OADTYE __e___t(___)_ Remark 1)

External identification number of theIiXTID Integer aerodynamic box (See Remark 2)

Internal identification number of the
INTID Integer aerodynamic box

AREA Real Area of the box

FORCE Real Real part of the applied normal force

PRESSReal Real part of the applied pressure

Created By: Many Modules

Notes:
1. The LOADTYPE is a textual key that identifies the load terms.

The following values are used:
APPLIED - User defined applied load from all disciplines except

NPSAERO. For NPSAERO, the APPLIED load is eqivalent
to the RIGID load. The RIGID load is not stored.

RIGID - Trimmed rigid aerodynamic load from SAERO
FLEXIBLE - Trimmed flexible contribution to aerodynamic load from

SAERO
2. The "grids" referred to by the EXTIM are actually the aerodynamic box elr-

ments. Each of these elements is ph)sically located at the centroid of a quadri-
lateral or triangular plate (the location of which is stored in GEOMSA or
GEOMUA depending on taie model).

3. The DISC flag also indicates which model is referred to by the results:
N-PSAERO refers to the nonplanar static aero model
S3-ERO rofers to the planar static aero model

592

W Entity: OCE IGj

Entity Type: Relation

Description: Contains statistil information oi%•A, •lx ,ig, x'ah• ' "dysis.

Relation Attributes:

NAME TYPE/KEY DESCRIPTiON

METHOD Text(8) Method of complex eigenvalue extraction

BCID Integer Boundary condition number

NLAMA Integer Number of eigenvalue

NVECTOR Integer number of eigenvectors

NOSTRT Integer Number of passes through the starting
points

NOMOVS Integer Num!-er of starting point moves

NODCMP Integer Number of decomposition

ITER Integer Tbtal number of iterations

ITERM Integer Reason for termination

Created By: Module CEIG

Entity: OCPARM

Entity Type: Realtion

Description: Contains the optimizer parameters and their new values for use in the ASTROS
optimality critorion methods as input from the Bulk Data File.

NAME TYPEIKEY DESCRIPTION

PARAM Text (8) Name of the paraimeter

INTPARM Integer ,alue of integer parameters

RSPPARM Real Value of real parameters

Created By: Module IFP

Notes:
1. Used by the VANGO module to override default values of control parameters.

593

Entity: OEIGS

Entity Type: Relation

Description: Contains statistical information of real eigenvalue analysis.

Relation Attributes:

NAME TYPEiKEY DESCRIPTION

METHOD Text(8) Method of real eigenvalue extraction

NITER Integer Design iteration number

BCID Integer Boundary condition number

NLAMA Integer Number of eigenvalue

NVECTOR Integer number of eigenvectors

NEVER Integer Number of eigenvalue errors

NVER integer Number of eigenvector errors
NOSTRT INumber of passes through the starting

T Integer points

NOMOVS Integer Number of starting point moves

NODCMP Integer Number of decomposition

ITER Integer Tbtal number of iterations

ITERM Integer Reason for termination

XMAX1 Real Maximum off diagonal mass term.

The row number at which the maximum off
I STORE Integer diagonal mass term is located

JSTORE Inter The column number at which the
J Eneger maximum off diagonal mass term is located

IMSG Integer Number of off diagonal mass terms

TITLE Text(72)
SUBTITLE Text(72) Not used

LABEL Text(72)

Created By: Module REIG

594

Entity: OGPWG

Entity Type: Relation

Description: Contains data from the grid point weight generation computations.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

NITER Integer Iteration number

BCID Integer Boundary condition number

GREF Integer Grid point identification (or zero)

Xo , Real

YO Real Basic coordinates of the reference point

zo Real

MO R Vector(36) Mass matrix at the reference point

S R Vector(9) Principal axes relative to basic system

MX_ _ Real Mass in the x-axis direction

RX R Vector(3) x,yz coordinates of the x-axis c.g.

AOL MY Real Mass in the y-axis direction

RY R Vector(3) x,yz coordinates of the y-axis c.g.

MZ Real Mass in the z-axis direction

RZ R Vector(3) x,yz coordinates of the z-axis c.g.

INERTIA R Vector(9) Matrix of inertias

PINERTIA R VL tor(3) Principal inertias about x

Q R Vector(9) Components of the principal axes

Created By: Module GPWG

595

Entity: OGRIDDSP

Entity Tyjpe: Relation

Description: Contains the displacements of the physical degrees of freedom that are requested
for print or punch in Solution Control.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

NITER Integer Iteration number

BCID Integer The boundary condition number

Discipline flag
= 1 Statics = 5 Transien

DISC Integer = 2 Modes = 6 Frequent
= 3 Steady Aero = 7 Buckling
= 4 Flutter = 8 Blast

SUBCASE Integer Subcase identification number

DISPTYPE lbxt (8) Label identifying the type of the
_DISPTYPE Te__t__(__)displacement (See Remark 1)

Real or complex flag
CMPLX Integer = 1 if real displacement= 2 if complex displacement

GPIDID Integer External identification number of the
physical point.

Internal identification number of the
..... Integer physical point

Flag indicating whether the point is a grid
point or a scalar point

FLA,- Integer = 0 for extra points
= 1 for scalar points
= 6 for structural nodes

RDISP Real Vector (6) Real part of the displacement

I DIS P %-'Real Vector (6) Imaginary part of the displacement

Created By: Many Modules

Notes:
1. The DISPyTYPE is a textual key that identifies the displacement terms. The

following values are used:
DISPLACE - Displacements of the structural degrees of freedom.
VELOCITY - Velocities of the structural degrees of freedom
ACCEL - Accelerations of the structural degrees of freedom.

596

, Entity: OGRIDLOD

Entity Type: Relation

Description: Contains the applied loads, reaction forces and otber loads on t' • physical de-
grees of freedom that are requested for print or punch in Solution Control.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

NITER Integer Iteration number

BCID Integer The boundary condition number

Discipline flag

DISC Integer = 1 Statics = 5 Transien
= 2 Modes = 7 Buckli

. = 3 Steady Aero = 8 Blast
SUBCASE Integer Subcase identification namber

LOADTYPE Text (8) Label identifying the type of the load (see
LOADTYPE Text_(8)remark 1)

Real or complex flag
CMPLX Integer = I if real load

= 2 if complex load

External identification number of the
GRI DI D Integer physical point

Internal identification number of the
S L Integer. physical point

Flag indicating whether the point is a grid
point or a scalar point

FLAG Integer = 0 for extra point
= 1 for scalar point
= 6 for structural nodes

RFORCE Reai Real part of the applied load

IFORCE Real ,., Imaginary part of the applied load

Created By: Many Modules

Notes:
1. The LOADTYPE is a textual key that identifies the load terms.

The following values are used:
APPLIED - User defined applied load from all disciplines. For SAERO,

the APPLIED load is computed and stored as the sum of
RIGID, FLEXIBLE and INERTIA loads.

RIGID - Trimmed rigid aerodynamic load from SAERO
FLEXIBLE - Trimmed flexible contribution to aerodynamic load from

SAERO
INERTIA - Inertia load contribution from SAERO and STATICS with in-

ertia relief
SPC - SPC reaction forces for STATICS, SAERO, MODES, TRAN-

SIENT and FREQUENCY.

597

Entity: OLOCA.TDV

Entity Type: Relation

Description: Contains the local design variable values that are requested for print or punch in
Solution Control.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

NITER IntegerIteration number

Element type, one of the following:
BAR CONM2

ETYPE 'lext (8) ELAS MASS
QDMEMI QUAD4
ROD SHEAR
TRIA3 TRMEM

EID Integer > 0 Element identification number

LAYRNUM Integer Layer number (=0 if noncomposite)

T Real Local design variable value (See Remark 2)

I Real 1st plane moment of inertia for BAR
elements

T2 Real 2nd plane moment of inertia for BAR
I_ elements

Created By- Module ACTCON

Notes:
1. Any local design variable that are requested for print or punch in Solution

Control at any iteration will be stored in this relation.
2. For each element type, T, I1 and 12 have different meanings

BAR - T is element cross-sectional area
I1 and 12 are related moments of inertia

CO'vNM2 T is concentrated mass value
I1 and 12 are not used

ELAS T is spring stiffness
I1 and 12 are not used

MASS - T is mass value
I] and 12 are i;ot used

QDMEM1 - T is element or laver thickness
I1 and 12 are not use'

QUAD4 - T is element or layer thickne.j
I1 and 12 are not used

ROD - T is element nross sectional area
I1 and 12 are not used

SHEAR - T is element thickness
I1 and 12 are not used

TRIA3 - T is element or layer thickness
I1 and 12 are not used

TRMEM - T is element or layer thickness
I1 and 12 are not used

598

AIL
Entity: OMIT

Entity Type: Relation

Description: Contains the definition of the degrees of freedom that the user wishes to omit
from the analysis through matrix reduction.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

GRID1 Integer > 0 Grid or scalar point id

COMPNTS1 Integer Ž0 Component of GRIDI to be omitted

Created By: Module IFP

Notes:
1. Used by the MKUSET module to build the USET relation.

Entity: OMIT1

Entity Type: Relation

Description: Contains the definition of the degrees of freedom that the user wishes to omit
S Relation Attributes: from the analysis through matrix reduction.

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

COMPNTS! Integer >0 Component of GRID1 to be omitted

GRIDI Integer > 0 Grid or scalar point id

Created By: Module IFP

Notes:
1. Used by the MKUSET module to build the USET relation.

Entity: OTL

Entity Type: Unstructured

Description: Contains a list of output times for each time step set.

Record:
1. Contains a list of the LIDs of the time steR sets in the Bulk Data file.
i. Contains the output time list for the (i-l)t set ID.

Created By: Module PFBULK

Notes: 1. This entity is used in the OFPxxx modules.

599

Entity: OPTIMIZE

Entity T`ype: Relation

Description: Contains the optimization-dependent solution control requests as input in the so-
lution control packet.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

Constraint gradient print selection
WORD 1 Print set identification
number > 0, or

= 0 NONE
=-IALL
=-? LAST
- _5 ACTIVE

WORD 2 Punch set identification
number
WORD 3 Print form
= 0 Rectangular
= 1 Polar
WORD 4 Punch form
WORD 5 Print frequency set

CGRAPRNT Integer vector (12) identification number
WORD 6 Punch frequency set
identification number
WORD 7 Print iteration set
identification number
WORD 8 Punch iteration set
identification number
WORD 9 Print mode set identification
number
WORD 10 Punch mode set
identification number
WORD 11 Print time set identification
number
WORD 12 Punch time set identification
number

DCONPRNT [Integer vector (12) Design constraint print selection

GDESPRNT Integer vector (12) Global design variable print selection

KSNSPRNT Integer vector (12) Element stiffness senstivity print

k SNSP __T _ntegervector _(12) selection

LDESPRNT Integer vector (12) Local design variable print selection

MSNSPRNT Integer vector (12) Element mass senstivity print selection
OGRAPRNT I vector (12) Objective function gradient print

T Integer selection

BULKPRNT Integer vector (12) Design model Bulk Data punch selection

600

NAME TYPE/KEY DESCRIPTION

HISTPRNT Integer Design iteration history print toggle
TITLE Text (72) User label TITLE
SUBTITLE Text (72) User label SUBTITLE

LABEL Text (72) User label LABEL

Created By: Module Solution

Notes:
1. The format of the CGRAPRNT vector is typical of the format of all the print

selection vectors. Additionally, the format for the print set Identification num-
ber in the CGRAPRNT vector is typical of that of the other set Identification
numbers in the vector.

2. The CASE, JOB and OPTIMIZE relation entities together contain the solu-
tion control requests as input in the sclution control packet. CASE contains
the case-dependent parameters, JOB contains the case-independent requests
and OPTIMIZE contains the optimization-dependent requests.

Entity: PA

Entity Type: Matrix

Description: External loads applied in the a-set derived from partitions of PF (see PG).

, Entity: PAA

Entity Type: Matrix

Description: Rigid body aerodynamic load vectors derived from partitions of PAF (see PAF).

Entity: PAERO1

Entity Type: Relation

Description: Contains a list of associated bodies for panelh used in Doublet-Lattice aerodynam-
ics.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0 Property identification number

BODIES I(6) Array attribute containing the
S Integer Array identifications of associated bodies

Created By: Module IFP

Notes:
1. The BODIES identification numbers refer to CAERO2 relation tuples.

601

Entity: PAERO2

Entity Type: Relation

Description: Contains the definition of the cross-sectional properties of Doublet-Lattice aerody-
namic bodies as input from the bulk data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0 Property identification

ORIENT Text (8) Type of motion allowed for the body

WIDTH Real > 0.0 Reference half width for the body

AR Real > 0.0 Aspect ratios for the body
LRSB I > 0 AEFACT identification number containing

the half widths of slender bodies

LRIB I > 0 AEFACT identification number containing

BInteger the half widths of interference bodies

AEFACT identification number that hasthe first array of theta values

AEFACT identification number that has
the second array of theta values

THI 1 Integer > 0First interference element using the
e ŽLTH1 theta distribution

THN1 Ž0g Last interference element using the

Integer0 LTH1 theta distribution

TH12 Žr0 First interference element using the

LTH2 theta distribution

THN2 Žr0 Last interference element using the

LTH2 theta distribution

First interference element after THN2 thatuses the LTH1 theta distribution

THN3 IntegerO _>0Last interference element after TH142 that

uses the LTH1 theta distribution

Created By: Module IFP

Notes:

602

S Entity: PAERO6

Entity 'Tpe: Relation

Description: Contains the definition of analysis parameters for bodies in the aerodynamic
model as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

BCID Integer > 0 Body component identification number

ACMPNT Text (8) Component type (i.e. FUSEL)

CP Integer Ž0 Coordinate system in which geometry
inputs are given

GROUP Integer Ž0 Group identification number

NRA]) Integer Ž0 Number of equal radial cuts used to define
body panels

AEFACT set identification number for the
angular locations of body panels

In AEFACT set identification number for the
axial locations of body panels

Created By: Module IFP

Entity: PAF

Entity Type: Matrix

Description: Rigid body load vectors multiplied by dynamic pressure.

Matrix Form: See AIRFRC for the dimensions.

Created By: MAPOL

Notes:
1. This matrix is the dynamic pressure times AIRFRC.
2. The MAPOL sequence supports the following partitions of the PAF matrix

(see the Theoretical Manual for the -- plicit fhrmation of these submatrices):

P. - PARO]

PAA -~ P~AL

Entity: PAL

Entity Type: Matrix

Description: A partition of PAA (see PAF).

603

Entity: PAR

Entity Type: Subscripted Matrix

Description: An intermediate matrix formed during the performance of an aeroelastic trim
analysis.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the 1-set
while the number of columns is equal to the number of rigid body load vectors
from AIRFRC.

Created By: MAPOL using GFBS

Notes:
1. PAR is the solution of:

[.Ali] [PAR I = [Pi]

2. Since PAR is needed in the sensitivity analysis, it is subscripted by boundary
condition.

Entity: PARBAR

Entity Type: Matrix

Description: A partition of the PAA (see PAF).

Entity: PARL

Entity Type: Subscripted Matrix

Description: Contains the partitioning vector to partition those degrees of retained for analy-
sis (a-set) into those reduced out (r-set) and those left over (I-set).

Matrix Form: A variable-sized single precision column vector having one row for each degree of
freedom retained for analysis. Degrees of freedom in the reduce set are denoted
by a real 0.0 and those left over by a real 1.0.

Created By: Module MKUSET

Notes:
1. The dimension of this subscripted matrix must be large enough for all optimi-

zation and analysis boundary conditions.
2. This vector is modified by the GDR modules if Generalized Dynamic Reduc-

tion is used.

604

, Entity: PBAR

Entity T1ype: Relation

Description: Contains the property definition fo,: the BAR element as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0, key Property identification number
MID1 Integer > 0 Material property identification

number of the MAT1 tuple

AREA Real > 0.0 Element cross-sectional area

11 Real Area moment of inertia in plane 1

12 Real Area moment of inertia in plane 2

TORSION Real Torsional constant
NSM Real > 0.0 Element nonstructural mass

Minimum cross-sectional area inTMIN Real dsg. design

C1, C2, D1, D2 RealEl, E2, Fl, D2 Real Element stress recovery coefficients
El, E2, Fl, F2 Real -
KFACT1 Real Area factor for shear (plane 1)
KFACT2 Real Area factor for shear (plane 2)

112 Real Area product of inertia

R1SQR Real Multiplicative factor to determine
I1 in design

R2 SQR Real Multiplicative factor to determine12 in design

ALPHA Real Exponential power associated with
Re.. the design variable.

Created By: Module IFP

Entity: PCAS

Entity Type: Unstructured

Description: Identifies active constraints for the current boundary condition.

Entity Structure: A single record of integers whose length is equal to the number of constraints ac-
tive in the current boundary cond:tion.

Created By: Module ABOUND

Notes:
1. There is one integer for each active constraint. The integer is set to the sub-

case number of the constraint (see the CONST relation).

605

Entity: PCC2MP

Entity Type: ReiaU. on

Description: Contains r'N property definitionts for a multiple ply composite material laminate
as input iýri t,, e Bulk Data file

'Relation Attribates:

NtAME TYPE/KEY DESCRIPTION

PI D Integcr > 0 Propertyidentification number

ZO Real The distance from the plane of the grid
points to the bottom surface

NSM Real _0. 0 nonstructural mass per unit area

SBoND -0Real > 0.0 Allowable shear asress of bcnding material

FATLCRIT Te'xt (8) Theory used to predict failure

THIN 'Real Mfinimum layer thicknesses for design

LOPT T"xt (8) Laminate generation option

MIDI Integer _0 - Ply material identification

THI CKI Intsger _3 Ply thickness

THETAI Ply material orientation angle

SO Text 8) Flag for stress output

Created By: Module IFF

Notes:
1. This relation will contain one tuple for each ply in each unique PID.

606

Entity: PCCMPS

Entity Iyrpe: Unitructured

Description: Contains one record for each PCOMPi Bulk Data type entry. Data includes the
PCOOMP entry and its intrinsic laminate property data.

Entity Structure:

Record _ Word Tye Description

1-2 Text PCOMP

r> 0 PID-Property identification
3 Integer 0 number

4 Integer > 0 N-Number of layers

5(11+4*N) RSP Remainder of PCOMP data

(12+4*N)-(31*N+11) RSP Layer Property data

(31*N+12)-(31*N+13) RSP Laminate Bending Inertia

Laminate Neutral Surface
(31*N+14)-(31*N+lS) RSP LctoLocation

Words 3 through 31*N+15 are repeated for each PCOMP Bulk Data entry,

1-2 Text PCOMP1

Integer PID-Property identification3 Ineger> 0 number

2 4 Integer > 0 N-Numbers of layers

5-(12+N) RSP Remainder of PCOMP1 data

(13+N)-(37+N) RSP Layer property data

(38+N)-(39+N) RSP Laminate Bending Inertia

(40+N)-(41+N) RSP Laminate Neutral Su-,ace
_ _ _ Location

Words 3-41+N are repeated for each PCOMP1 Bulk Data entry,

1-2 Text PCOMP2

PID-Property identification
3Integer> 0 number

4 Integer > 0 N-Number of layers

5-(11+2*N) RSP Remainder of PCOMP2 data

(12+2*N)-(36+2*N) RSP Layer property data

(37+2*N)-(38+2*N) RSP Laminate Bending Inertia
0 RLaminate Neutral Surface

___j(39+2*N)-(40+2*N) RSP LctoLocation

Words 3-40+2*N are repeated for each PCOMP2 Bulk Data entry.

Created By: Module EMG

607

Entity: PCOMPI

Entity Type: Relation

Description: Defines the property of a n-ply laminated composite material where all plies are
composed of the same material and are of equal thickness.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

PID Integer > 0 Property identification number

z 0 Real Offset of the element reference plane from the
plane of grid points

NSM Real > 0.0 nonstructural mass per unit area

SBOND Real > 0.0 Allowable shear stress of the bending material.

FAILCRIT Text (8) Failure theory to predict ply failure

TMIN Real > 0.0 Minimum layer thickness for design

MID Integer > 0 Ply material identification

LOPT Text (8) Lamination generation option

THICK Real > 0.0 Ply thickness

THETAI Real Ply material orientation angle

Created By: Module IF?

Notes:
1. This relation will contain one tuple for each ply for each unique PID.

608

, Entity: PCOMP2

EntityType: Relation

Description: Defines the properties of a n-ply laminated composite material where all plies are
of the same material.

Relation Attributes:

NAME IYPE/KEY DESCRIPTION

PID Integer > 0 Property identification number

z 0 Real Offset of the element reference plane from
the plane of grid points.

NSM Real > 0.0 Nonstructural mass per unit area

Allowable shear stress of the bondingSBOND Real > 0.0maeil material.

FAILCRIT Text (8) Failure theory to predict ply failure

TMIN Real > 0.0 Minimum layer thickness for design

MID Integer> 0.0 Ply material identification

LOPT Text (8) Lamination generation option

THICKI Real > 0.0 Ply thickness

THETAI Real Ply material orientation angle

Created By: Module IFP

Notes:
1. The relation will contain one tuple for each ply for each unique PID.

Entity: PDF

Entity Type: Matrix

Description: Applied loads matrix for frequency response analysis.

Matrix Form: Complex matrix with one column for each frequency at which frequency response
results are to be computed. This matrix is applicable for both the direct and mo-
dal methods of solution so that the number of rows equal to the number of de-
grees of freedom in the d- or h-sets, depending on the method of solution.

Created By: Module DYNLOAD

Notes:
1. This matrix is also for applied gust loads if the gust discipline option of fre-

quency response is selected.

609

Entity: PDT

Entity Type: Matrix

Description: Applied loads matrix for transient response analysis.

Matrix Form: Complex matrix with one column for each frequency at which transient response
results are to be computed. This matrix is applicable for both the direct and mo-
dal methods of solution so that the number of rows equal to the number of de-
grees of freedom in the d- or h-sets, depending on the method of solution.

Created By: Module DYNLOAD

Entity: PELAS

Entity Type: Relation

Description: Contains the property data for scalar spring elements as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PI D Integer, key Property identification number

K Real Spring constant

DA•PCOEF Real Damping coefficient

STRSCOEF Real Stress coefficient

TMIN Real Minimum spring constant value for design

Created By: Module IPF

Entity: PF

Entity Type: Matrix

Description: External loads in the f-set derived from partitions of PN (see PG).

Entity: PFGLOAD

Entity Type: Matrix

Description: Applied loads matrix on the physical degrees of freedom for the frequency depend-
ent loads in the current boundary condition.

Matrix Form: Complex rectangular matrix with one row for each physical degree of freedom
and one column for each frequency step in each frequency analysis in the current
boundary condition.

Created By: Module DYNLOAD

Notes:
1. This matrix is formed only if the LOAD print request for the FREQUENCY

discipline is set fot the current boundary condition.

610

. Entity: PFOA

Entity Type: Subscripted Matrix

Description: Contains the partitioning vector to partition the free degrees of freedom (f-set)
into the omitted degrees of freedom (o-set) and those retained for analysis (a-set).

Matrix Form: A variable-sized single-precision column vector containing one row for every free
degree of freedom. Degrees of freedom in the o-set are denoted by real 0.0 and
those in the a-set by real 1.0.

Created By: Module MKUSET

Notes:
1. The dimension of this subscripted matrix must be large enough for all optimi-

zation and analysis boundary conditions.
2. This matrix is modified by the GDR modules if Generalized Dynamic Reduc-

tion is used.

Entity: PG

Entity Type: Matrix

Description: Contains the global loads matrix for the current boundary condition.

Matrix Form: A variable-size matrix having one row for each structural degree of freedom in
the model and one column for each load condition in the current boundary condi-
tion., Created By: Module GTLOAD

Notes:
1. This matrix is flushed and re-formed for each boundary condition in the prob-

lem.
2. The MAPOL sequence supports the following partitions of the PG matrix (see

Theoretical Manual for the explicit formation of these submatrices).

PG -- I FN -

PFPA PA -4 [Z

Entity: PGA

Entity Type: Matrix

Description: Partitioning vector for active load cases.

Matrix Form: One column with the numbers of rows equal to the number of subcases for the
current boundary condition.

Created By: Module ABOUND

Notes:
1. Active subcases are designated by a value of 1.0, inactive subcases by 0.0.

611

Entity: PGMN

Entity Type: Subscripted Matrix

Description: Contains the partitioning vector to partition the structural degrees of freedom (g-
set) into the dependent multi-point constraint set (m-set) and the indepandent set
(n- set).

Matrix Form: A variable-sized single precision column vector containing one row for each struc-
tural degree of freedom in the model. Degrees of freedom in the m-set are de-
noted by real 0.0 and those in the n-set by real 1.0.

Created By: Module MKUSET

Entity: PHIA

Entity Type: Matrix

Description: Contains the eigenvectors in the analysis degrees of freedom for each vector com-
puted.

Matrix Form: A variable-sized vector having one column for each computed eigenvector and one
row for each degree of freedom in the analysis set for the current boundary condi-
tion.

Created By: Module REIG

Notes:
1. See PHIG for data recovery.

Entity: PHIB

Entity Type: Matrix

Description: Matrix of modes shapes used in nuclear blast response.

Matrix Form: Real rectangular matrix with one row for each a-set degree of freedom and one
column for each retained mode.

Created By: MAPOL

Notes:
1. PHIB is obtained by merging PHIR and PHIE.

Entity: PHIE

Entity Type: Matrix

Description: Matrix of elastic mode shapes used in nuclear blast response.

Matrix Form: Real rectangular matrix with one row for each a-set degree of freedom and one
column for each retained elastic mode.

Created By: MAPOL

612

OEntity: PHIF

Entity Type: Matrix

Description: Normal modes in the f-set recovered from PHIA and PHIO (see PHIG).

Entity: PHIG

Entity Type: Subscripted Matrix

Description: Contains the eigenvectors in the global set computed in the REIG module.

Matrix Form: A variable-sized matrix having one column for each eigen vector computed and
one row for each structural degree of freedom.

Created By: MAPOL

Notes:
1. The MAPOL sequence recovers this matrix in the following order:

[PHIO] = [GSUBO] * [P•.•]

SPHXA P=

[PHF] --4 PHIN

PR -- PRIG

*TUM contains modes in the m-set. The entity is reused in the MAPOL se-

quence.

Entity: PHIKH

Entity Type: Matrix

Description: Normal mode shapes splined to the aerodynamic panels.

Matrix Form: Real rectangular matrix with one row for each aerodynamic degree of freedom
and one column for each normal mode.

Created By: Module QHIHLGEN

Entity: PHIN

Entity Type: Matrix

Description: Modes in the n-set, recovered from PHIF (see PHIG).

Entity: PHIO

Entity Type: Matrix

Description: Mode shapes for omitted degrees of freedom (see PHIG).

613

Entity: PHIOK

Entity Type: Matrix

Description: Approximate mode shapes produced by generalized dynamic reducticn.

Matrix Form: Real rectangular matrix with one row for each o-set degree of freeiom and one
column for each approximate mode shape.

Created By: Module GDR2

Notes:
1. This matrix is computed for generalized dynamic reduction and only if there

are k-set degrees of freedom.

Entity: PHIR

Entity Tyrpe: Matrix

Description: Matrix of rigid body shapes used in nuclear blast response.

Matrix Form: Real rectangular matrix with one row for each a-s*.t degree of freedom and one
column for each retained rigid body mode.

Created By: MAPOL

Notes:
1. This matrix is created by performing a ROWMERGE using matrices D and

ID2 and partiton vector MPART.

614

, Entity: PIHEX

Entity Type: Relation

Description: Contains the property data for an isoparametric hexahedron element as input
from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

PID Integer > 0, key Property identification number

MID Integer > 0 Material identification number

Identification number of the coordinate
CID Integer _0 system in which the material referenced by

MID is defined

Number of integration points along eachedge of the element

AR Real > 1.0 Maximum aspect ratio (ratio of longest to
shortest edge) of the element

Real, Maximum angle in degrees between the
ALFA 0.0LFA180.0 normals of two subtriangles comprising a

quadrilateral face

Maximum angle in degrees between the

BETA Real, vector connecting a corner point to an
0.05BETA•180.0 adjacent midside point and the vector

connecting that midside point and theother midside or corner point

Created By: Module IFP

Notes:

Entity: PLBAR

Entity Type: Matrix

Description- A partition of matrix PA (see PG).

615

Entity:, PLIST

Entity Type: Relation

Description- Cnntains the property types and identification numbers associated with a design
variable.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

LTNKID Integer > 0, key Design variable identification

PTYPE Text (8) Property relation identifier

PID1 Integer > 0 Property identification

Created By: Module IFP

Notes:
1. The PTYPE is the name of the relation in which the PID associated with the

design variable is found.
2. This relation contains one tuple for each PID associated with each PTYPE

listed in each unique LINKID.
3. Allowable PTYPE entries are:

PROD PCOMP, PCOMP1, PCOMP2
PSHEAR PMASS
PQDMEM PSHELL
PTRMEM PELAS

PBAR

Entity: PLOAD

Entity Type: Relation

Description: Contains the load information defined over a triangular or quadrilateral region
as input from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Set identification number

SCALE Real Scale factor

GRID1, GRID2 Integer > 0 Grid points defining region of load

GRID3, GRID4 Integer > 0 application

Created By: Module IFP

Notes:
1. The GRID4 entry is zero if a triangular region is defined.

616

SEntity: PLYLIST

Entity Type: Relation

Description: Contains a list of composite layers as input in thA Bulk Data file.

Relation Attributes:

NAME TYPE/KEY JESCRIPTION

SETID Integer > 0 Set identification number

PLY Integer > 0 Ply number

Created By: Module IFP

Notes:
1. This relation contains one tuple for each ply in each set.

617

Entity: PMASS

Entity Type: Relation

Description: Contains the mass value of a scalar mass element as input from the Bulk Data
file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

PI D Integer > 0, key Property identification number

MAS S Real Mass value

TMIN Real > 0.0 Minimum mass value for design

Created By: Module IFP

Entity: PMAXT

Entity Type: Matrix

Desciiption: Contains the maximum thickness design variable based on the user's defined
maximum (laminate) thickness.

[t] = [IEAXT • [P9 + [VFIXV]

Matrix Form: A variable-sized single precision matrix having one column for each shape func-
tion designed laminate or element and one row for each global design variable.
The terms in PMAXT are the sum of the PTRANS columns associated with one
laminate (if composite).

Created By: Module MAKEST

Notes:
1. If a layered composite has some undesigned laminae, the VFIXD entity con-

tains the terms needed to calculate the fixed contribution.
2. If no shape function linking is used, this matrix will have no columns.

4
618

. Entity: PMINT

Entity Type: Matrix

Description: Contains the minimum thickness variable linking terms based on the user's de-
fined minimum (laminate) thickness.

[t] = [IM=I N T * [v]

Matrix Form: A variable-size single precision matrix that has one column for each element de-
signed by shape function linking and one row for each global design variable.
The terms in PMINT are the PTRANS column for the shape function designed
element divided by the user input minimum (laminate) thickness.

Created By: Module MAKEST

Notes:
1. If no shape function linking is used, this matrix will have no columns.

Entity: PN

Entity Type: Matrix

Description: External loads applied in the n-set derived from PG (see PG).

Entity: PNSF

* Entity Type: Subscripted Matrix

Description: Contains the partitioning vector to partition the independent degrees of freedom
(n-set) into the dependent single point constraint set (s-set) and the free degrees
of freedom (f-set).

Matrix Form: A variable-sized single precision column vector containing one row for each inde-
pendent degree of freedom. Degrees of freedom in the s-set are denoted by real
0.0 and those in the f-set by real 1.0.

Created By: Module MKUSET

Entity: PO

Entity Type: Matrix

Description: A partition of the PF matrix (see PG).

619

Entity: POARO

Entity Type: Subscripted Matrix

Description: Matrix of aerodynamic "unit" loads applied to omitted degrees of freedom.

Matrix Form: Real rectangular matrix with one row for each o-set degree of freedom and the
same number of columns ar the AIRFRC matrix.

Created By: MAPOL

Notes:
1. Tlhe Matrix may be required in the static aeroelastic sensitivity analysis and

is therefore subscripted by the boundary condition.

Entity: PQDMEM1

Entity Type: Relation

Description: Contains the properties of the isoparametric quadrilateral membrane element as
input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0, key Property identification number

MID! Integer > 0 Material identification number

THICK Real> 0.0 Element thickness

NSM Real >0 Element nonstructural mass

TMIN Real 0 Minimum thickness for design

Created By: Module IFP

Entity: PR

Entity Type: Matrix

Description: A partition of the PAmatrix (see PG).

620

O Entity: PROD

Entity Type: Relation

Description: Contains the property data for ROD elements as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0, key Property identification number

Material identification number of a MATI
HID1 Integer >0 tu0tuple

AREA Real > 0.0 Element cross sectional area

TORSION Real > 0.0 Torsional constant

STRSCOEF Real Stress recovery coefficient

NSM Real > 0.0 Element nonstructural mass

TMIN Real Ž 0.0 Minimum cross-sectional area for design

Created By: Module IFP

Entity: PS

Entity Type: Matrix

Description: A partition of the PN matrix (see PG).

Entity: PSHEAR

Entity Type: Relation

Description: Contains the property data for the shear panel as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0, key Property identification number

MIDI Integer > 0 Material identification number

THICK Real > 0 Element thickness

NSM Real > 0.0 Element nonstructural mass

TMIN Real > 0.0 Minimum thickness for design

Created By: Module IFP

621

Entity: PSHELL

Entity Type: Relation

Description: Contains the membrane, bending, shear and coupling properties of thin two-di-
mensional elements as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

PID Integer > 0, key Property identification number

MID1 Integer > 0 Membrane material id

THICK Real > 0 Element default thickness

MID2 Integer >0 Bending material id

BENDSTIF Real Bending stiffness parameter

MID3 Integer >0 Transverse shear material id
TRNSVRS Real Transverse shear thickness divided by the

membrane thickness

NSM Real Ž>0.0 Element nonstructural mass

FZ1, FZ2 Real Fiber distances for stress computation

MID4 Real Ž 0 Membrane-bending coupling material
identification

CID2 IMaterial coordinate system identification

2Integer number

THETAM Real Material orientation angle

CI DS Integer Stress recovery coordinate system

THETAS Real Stress recovery orientation angle
OFFSTI IOffset of the mid plane from the plane of

SInteger the grid points

TMIN Real Ž_ 0.0 Minimum thickness for design

Created By: Module IFP

6
622

, Entity: PTGLOAD

Entity Type: Matrix

Description: Applied loads matrix on the physical degrees of freedom for the time dependent
loads in the current boundary condition.

Matrix Form: Real rectangular matrix with one row for each physical degree of freedom and
one column for each time step in each transient analysis in the current coundary
condition.

Created By: Module DYNLOAD

Notes:
1. This matrix is formed only if the LOAD print request for the transient disci-

pline is set for the current boundary condition.

Entity: PTRANS

Entity Type: Matrix

Description: Contains the linking information for design variables if the model has design vari-
ables defined.

1 t } = [FaNS]T

Matrix Form: A variable-sized single precision matrix having one column for each local design
variable and one row for each global design variable.

Created By: Module MAKEST

Notes:
1. This matrix is empty if the model contains no design variables.
2. A column of PTRANS is the sensitivity of the local variable to the global vari-

able.

Entity: PTRMEM

Entity Type: Relation

Description: Contains the property data for the constant strain triangle as input from the
Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

PID Integer > 0, key Property identification number

Material identification number of MAT1 orMID1 Integer > 0 MT ulMAT2 tuple

THICK Real > 0.0 Element thickness
NSM Real Ž0.0 Element nonstructural mass

TMIN Real >0.0 Minimum thickness for design

Created By: Module IFP

623

Entity: P1

Entity Type: Matrix

Description: Applied loads matrix created when there are unrestrained structural degrees of
freedom.

Matrix Form: Real, ractangular matrix with one row for bach a-set degree of freedom and one
column for each subcase or column in the PAF matrix, depending on whether a
static analysis or a static aeroelastic analysis is being performed.

Created By: MAPOL

Entity: P2

Entity Type: Matrix

Description: Applied loads matrix created when there are unrestrained structural degrees of
freedom.

Matrix Form: Real, rectangular matrix with one row for each r-set degree of freedom and one
column for each subcase or column in the PAF matrix, depending on whether a
static analysis or a static aeroelastic analysis is being performed.

Created By: MAPOL

624

SEntity: QDMM1EST

Entity Type: Relation

Description: Contains the element summary data for the isoparametric quadrilateral mem-
brane element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

PID Integer > 0 Element property identification number

PTYPE Text (8) Element property type

LAYRNUM Integer >0 Composite layer number

SILl Integer > 0

SIL2 Integer > 0 Internal grid point id

SIL3 Integer > 0

SIL4 Integer > 0

CID Integer _0 Coordinate system defining material axis

THETA Real Material orientation angle for anisotropic
material behavior

MID1 Integer Ž 0 Material id of MAT1 or MAT2 tuple

THICK Real Ž 0.0 Element thickness

NSM Real Ž 0.0 Element nonstructural mass

COORD1 Integer Ž0 External coordinate system id for
_OORD1__ __nteger _ > displacements at SILl

Xl, Y1, Z1 Real Basic coordinates of SIL1
COORD2 Ž0O External coordinate system id for

2 Integer displacements at SIL2

X2, Y2, Z2 Real Basic coordinates of SIL2

COORD3 Integer >0 External coordinate system id for
displacements at SIL3

X3, Y3, Z3 Real Basic coordinates of SIL3

COORD4 Integer Ž 0 External coordinate system id for
displacements at SHA

X4, Y4, Z4 Real Basic coordinates of SIIA

SCON Integer Stress constraint flag

DESIGN Integer Design flag

STHRM Real Array Thermal stress terms for the constrained
_(3) element

625

NAME TYPE/KEY DESCRIPTION

STHRMA Real Array Thermal strain terms for the constrained
(3) element

TREFP In r0 Pointer to the TREF entity for thermal
loads/stress evaluation of the designed element

Created By: Module MAKEST

Notes:
1. This relation is built from the CQDMEM1, associated P-type and the basic

grid point data. It contains one tuple for each quadrilateral membrane ele-
ment in the problem.

2. A nonzero SCON flag denotes that the element is affected by a stress con-
straint.

3. A nonzero DESIGN flag denotes that the element is affected by a design vari-
able.

4. LAYRNUM is zero for noncomposite elements.

Entity: QEE

Entity Type: Matrix

Description: A partition of the GENQ matrix that contains only elastic degrees of freedom.
Used in the nuclear blast response analysis.

Matrix Form: Real square matrix with the number of rows and columns equal to the namber of
elastic modes retained for the blast analysis.Created By:
MAPOL

Entity: QHHL

Entity Type: Matrix

Description: Matrix list of generalized unsteady aerodynamic coefficients.

Matrix Form: Complex rectangular matrix with one row for each retained mode shape and with
the number of columns equal to the product of the number of retained mode
shapes and the number of M-k pairs at which aerodynamics are required.

Created By: Module QHHLGEN

Notes:
1. The matrix may be required in the flutter sensitivity analysis and is therefore

subcribed by boundary condition.

626

. Entity: QHJL

Entity Type: Matrix

Description: Generalized aerodynamic data for the gust loads determination.

Matrix Form: A variable-sized matrix list. Each Mach number and reduced frequency required
in the gust analysis creates a matrix with one row for each retained mode panel
and one volumn for each aeroriynamic panel.

Created By: QHHLGEN

Notes:
1. See QJKL
2. The order of the matrices in the list is the order of m-k pairs in UNMK.

Entity: QJJL

Entity Type: Matrix

Description: Matrix list of unsteady aerodynamic coefficients.

Matrix Form: Complex rectangular matrix with one row for each aerodynamic panel and with
the number of columns equal to the product of the number of aerodynamic panels
and the number of M-k pairs at which aerodynamics are required.

Created By: Module AMP

Notes:
1. This matrix list is generated only if there is a requirement for nuclear blast

analysis.
2. The matrix components in QJJL are the inverse of the transpose of the ma-

trix components of matrix AJJTL associated with BLAST analyses.

Entity: QKJL

Entity Type: Matrix

Description: Aerodynamic interpolation list containing data required for gust analysis.

Matrix Form: A variable-sized matrix list. There is an nk by nj matrix for each Mach number
and reduced frequency required in the gust analysis.

Created By: Module AMP

Notes:
1. The order of the matrices in the list is the order of m-k pairs in UNMK.
2. One matrix QKJ is generated for each M-k pair associated with gust analyses.

627

Entity: QKKL

Entity Type: Matrix

Description: Matrix list of unsteady aerodynamic coefficients.

Matrix Form: Complex rectangular matrix with one row for each aerodynamic degree of free-
dom and with the number of columns equal to the product of the number of aero-
dynamic degrees of freedom and the number of M-k pairs at which aerodynamics
are required.

Created By: Module AMP

Notes:
1. The matrix components of this list are generated from:

[QK I = [sr] * [AJJTI- * iv] + [m1r + (ik)D2]

2. One matrix QKK is generated for each M-k pair associated with flutter or
gust analyses.

Entity: QRE

Entity Type: Matrix

Description: A partition of the GENQ matrix.

Matrix Form: Real rectangular matrix with the number of rows equal to the number of rigid
body modes and the number of columns equal to the number of elastic modes re-
tained for the blast analysis.

Created By: MAPOL

Entity: QRR

Entity Type: Matrix

Description: A partition of the GENQ matrix.

Matrix Form; Real square matrix with the number of rows and columns equal to the number of
rigid body modes in the blast analysis.

Created By: MAPOL

62
628

, Entity: QUAD4EST

Entity: Relation

Dexcription: Contains the element summary data for the quadrilateral QUAD4 plate element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number
PID Integer > 0 Element property identification number
PTYPE Text (8) Element property type
LAYRNUM Integer Ž 0 Composite layer number
ZILI Integer > 0 Internal grid point id 1
SIK2 Integer > 0 Internal grid point id 2

SI .3 Integer > 0 Internal grid point id 3
SIL4 Integer > 0 Internal grid point id 4

THICKI Real > 0.0 Membrane thickness for grid 1
THICK2 Real > 0.0 Membrane thickness for grid 2
THICK3 Real > 0.0 Membrane thickness for gind 3
THICK4 Real > 0.0 Membrane thickness for grid 4
CID1 Integer Ž 0 Coordinate system defining material axis
THETAM Real Material orientation angle
OFFSTO Real Offset of the element reference plane from the

plane of grid points.
MID1 Integer >0 Material identification number for membrane

THICK Real > 0.0 Membrane thickness
MID2 Integer Ž0 Material identification number for bending

BENDSTIF Real > 0.0 Bending stiffness parameter

Material identification number for transverseMI D3 Integer Ž0 shashear

TRNSVRS Real > 0.0 Transverse shear thickness factor

NSM Real > 0.0 nonstructural man

FZ 1 Real > 0.0 Fiber distance for stress computation
FZ2 Real > 0.0 Fiber distance for stress computation

MID4 Integer Ž 0 Material identification number for membrane-
bending coupling

CIDS Integer Ž0 Coordinate system defining stress output
CIDSIntegI coordinate system

THETAS Real Stress output orientation angle
COORD! Integer External coord system for 3ILl
X!, Y1, Zi Real Basic coordinates of SILl

629

NAME TYPEIKEY DESCRIPTION

COORD2 Integer Ž 0 External coord system for SIL2

X2, Y2, Z2 Real Basic coordinates of SIL2

COORD3 Integer >0 External coord system for SIL3

X3, Y3, Z3 Real Basic coordinates of SIL3
COORD4 Integer > 0 External coord system for SIL4

X4, Y4, Z4 Real Basic coordinates of SIL4
SCON Integer Stress constraint flag

DES I GN Integer Design flag

STI-.M Real Array(3) Thermal stress terms for the constrainedSTHR Rea Arry(3)element

STHRMA Real Array(3) Thermal strain terms for the constrainedSTHRM Rea Arry(3)element

TREFPT Integer Ž 0 Pointer to the TREF entity for thermal
_ -_ _ loads/stress evaluation of the designed element

Created By: Module MAKEST

Notes: This relation is built from the CQUAD4, associated P-type and the basic grid
point data. It contains one tuple for each isoparametric QUAD4 element in the
problem.

Entity: RANDPS

Entity Type: Relation

Description: Contains the definition of load set power spectral density factors for use in Ran-
dom analysis having the frequency dependent form.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Random analysis set identification number

Subcase identification number of excited
EXCITID Integer > 0 la eload set

APPLYID I > 0 Subcase identification number of applied
load set

X, Y Real Components of complex number

TABRNDID Integer Ž0 Identification number of a TABRNDi entry

Created By: Module IFP

630

Entity: RBAR

Entity Type: Relation

Description: Contains the definition of a rigid bar element with six degrees of freedom at each
end.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 MPC identification number

EID Integer > 0 Rigid bar element identification number
GA, GB I > 0 Grid point identification numbers of

connection points.

Independent DOF in the global coordinate
CNA, CNB Integer system for the elements at grid point GA

and GB.

Dependent DOF in the global coordinate
CMA, CMB Integer system assigned by the element at grid

point GA and GB

Created By: Module IFP

. Entity: RBE1

Entity Type: Relation

Description: Contains the definition of a rigid body connected to an arbitrary number of grid
points.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 MPC identification number

EID Integer > 0 Rigid body element identification number
GXI I > 0 Grid point identification numbers at which

IInteger dependent/independent DOF are assigned

Component numbers of
CXI Integer > 0 dependent/independent DOF in the global

coordinate system at grid points GXi

UMFLAG Text (4) Character string indicating the start of the
list of dependent degrees-of-freedom

Created By: Module IFP

631

Entity: RBE2

Entity Type: Relation

Description: Contains the definition of a rigid body whose independent degrees-oP-?reedom are
specified at a single grid point and whose dependent degrees-of-freedom are speci-
fied at an arbitrary number of grid points.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 MPC identification number

EID Integer > 0 Rigid body element identification number
GN I 0 Grid point identification number at which

Integer >all six independent DOF are assigned

Component numbers of dependent degrees-
CM Integer of-freedom in the global coordinate system

assigned by the element at grid points GMi
GMI Int r > >0 Grid point identification number at which

MInteger >dependent DOF are assigned

Created By: Module IFP

Entity: RBE3

Entity Type: Relation

Description: Contains the definition of the motion of a reference grid point as the weighted av-
erage of motions at a set of other grid points.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 MPC identification number

EID Integer> 0 Rigid body element identification number

REFGRID Integer > 0 Reference grid point identification number

Component numbers of DOF in the global
REFC Integer coordinate system that will be computed at

REFGRID

Integer field of either grid point ID or
QI Integer component number

QR Real Real field of weighting factor

UMFLAG Uxt (4) Character string indicating the start of the
____LA __ Text__(4list of dependent DOF

Created By: Module IFP

632

, Entity: RHS

Entity Type: Subscripted Matrix

Description: A matrix used in the analysis of free-free structures that corresponds to load vec-
tors applied to the supported degrees of freedom.

Matrix Form: The number of rows is equal to the number of degrees of freedom in the r-set
while the number of columns varies by the type of analysis being performed.

Created By: MAPOL

Notes:
1. For an inertia relief analysis, RHS is equal to PR plus the transpose ol'D

times PLBAR.
2. For a static aeroelastic analysis, RHS is equal to P2 minus K21 times PAR.
3. Since RHS may be needed in the sensitivity analysis, it is subscripted by

boundary condition number.

Entity: RLOAD1

Entity Type: Relation

Description: Contains information on frequency dependent loads as defined in the RLOAD1
bulk data entry.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SID Integer > 0 Set identificatinn number

ILAG Integer Identification number for DLAGS

ITC Integer Identification number for TABLEDi(C)

ITD integer Identification number for TABLEDi(D)

Created By: Module IFP

Notes:
1. The relation is used in FRLGAto generate dynamic loads.

633

Entity: RLOAD2

Entity Type: Relation

Description: Contains information to define frequency dependent dynamic loads in a form
specified in the RLOAD2 bulk data entry.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SID Integer > 0 Set identification number

I LAG Integer Identification number for DLAGS

TB Integer Identification number for TABLEDi(B)

TP Integer Identification number for TABLEDi(P)

Created By: Module IFP
Notes:
1. The relation is used in FRLGA to generate dynamic loads.

4

634

Entity: RODE ST

Entity Type: Relation

Description: Contains the element summary data for the ROD element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EiD Integer > 0, key Element identification number

P1 D Integer > 0 Element property identification number

SIL_ Integr > 0 Internal id of grid at end A

SIL2 Integer > 0 Internal id of grid at end B

MIDII Intger > 0 Material id of a MATI tuple

AREA Real,> 0.0 Element cross-sectional area
J Ral a 0.0 Torsional constant

c Real Stress recovery coefficient

NSM -Real _ 0.0 Element nonstructural mass

COORD1 Integer >0 External coordinate system id for
displacements at end A

Xi, Y1, Z1 Real Basic coordinates at end A
COORD2 Integer 0 External coordinate system id for

Ig displacements at end B

X2, Y2, Z2 Real Basic coordinates at end B

SCON Integer Stress constraint flag

DESIGN integer Design flag

STHRM Real Thermal stress term for the constrained
_element

IIReal Thermal strain term for the constrained
STHA _ Realelement

TREFPT Integer Ž 0 Pointer to TREF entity for thermal stress
CM gevaluation and thermal loads evaluation

Created By: Module MAKEST

Notes:

1. This relation is built from the CONROD, CROD, PROD and basic grid point
relations. It contains one tuple for each ROD element in the problem.

2. A nonzero SCON flag denotes that the element is affected by a stress con-
straint.

3. A nonzero DESIGN flag denotes that the element is affected by a design vari-
able.

635

Entity: RROD

Entity Type: Relation

Description: Contains the definition of a pin-ended rod that is rigid in extension.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 MPC identification number

EI D Integer > 0 Rigid rod element identification number
GA, GB I > 0 Grid point identification numbers of

connection points.

Component number of one dependent DOF
CMA, CMB Integer in the global coordinate system assigned by

_.. the element at either grid point GA or GB

Created By: Module IFP

Entity: R21

Entity Type: Subscripted Matrix

Description: Intermediate matrix formed in the solution of structures that contain unre-
strained degrees of freedom.

Matrix Form. Real rectangular matrix with one row for each r-set degree of freedom and one col-
umn for each a-set degree of freedom.

Created By: MAPOL

Notes:
1. R21 is the transpose of IFR.

Entity: R22

Entity Type: Matrix

Description: Intermediate matrix formed in the solution of structures that contain unre-
strained degrees of freedom.

Matrix Form: Real square matrix with one row and solumn for each r-set degree of freedom.

Created By: MAPOL

Notes:
1. R22 is created from:

[R2] = [D] BT • + [1mEAR]

636

, Entity: R31

Entity Type: Subscripted Matrix

Description: Intermediate matrix fo -med in the solution of static aeroelasitc response.

Matrix Form: Real rectangular matrix with one row and column for each r-set degree of free-
dom and one column for each I-set degree of freedom.

Created By: MAPOL

Notes:
1. R31 is only computed for the steady aeroelastic analysis.
2. R31 is created from:

[R3] = [D] • [MLL] + [Z]RL

Entity: R32

Entity Type: Subscripted Matrix

Description: Intermediate matrix formed in the solution of static aeroelasitc response.

Matrix Form: Real square matrix with one row and column for each r-set degree of freedom.

Created By: MAPOL

Notes:
1. R32 is only computed for the steady aeroelastic analysis.
1. R32 is created from:

[R3] = [D] • [GL] + [AMR]

Entity: SAVE

Entity Type: Relation

Description: Contains a list of data base entities whose contents are to be saved rather then
purged through the UTPURG utility.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

ENTNAM Text (8) The name of a database entity.

Created By: Module IFP

Notes:
1. An entity named in this relation will not have its contents purged by the UT-

PURG utility.

637

Entity: SEQGP

Entity Type: Relation

Description: Contains the user selected resenquencing requests for the grid and scah-r points
of the structural modes.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EXTID Integer > 0 Grid point identification number

SEQNUM Text (8) Sequenced identification number (see beolw) .

Created By: Module IFP

Notes:
1. EXTID is any grid or scalar point identification number which is to be reiden-

tified for sequencing purposes. The sequence number is a special number
which may have any of the following forms where X is a decimal integer digit
- X X..X.X, XXX.X. XXX=X, or XXXX where any of the leading X's
may be omitted. This string contains no imbedded blanks. The leading charac-
ter will not be a decimal point.

Entity: SET1

Entity Type: Relation
Description: Contains a list of structural grid points to be used in splining loads from aerody-

namic points to structural points and modes to be omitted from flutter analyses.
Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

GRI DI Integer > 0 Structural grid point id

Created By: Module IFP

Notes:
1. This relation contains one tuple for each grid point in each set.

4
638

W Entity: SE T2

Entity Type: Relation

Description: Contains the definition of a set of structural grid points in terms of aerodynamic
elements. The set will be used to spline aero loads to the structure.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

sP1 Real Lower spanwise division

sP2 Real Upper spanwise division

CH1 Real Lower chordwise division

CH2 Real Upper chordwise division

ZMAX Real Z-coordinate of upper surface

ZMIN Real Z-coordinate of lower surface

Created By: Module IFP

Notes:
1. Tuples of this relation are referenced by the GRDSETID attribute of the

SPLINE1 and SPLINE2 relations.

Entity: SiAPE

Entity Type: Relation

Description: Contains the element identification numbers and weighting factors specified on
the SHAPE Bulk Data entry.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SHAPEID Integer Shape identification number

ETYPES Text (8) Element type

EIMD Integer Element identification number

PREF Real Design variable linking factor

Created By: Module IFP

Notes:
1. Allowable ETYPE1 entries are:

- CROD, CONROD
- CSHEAR - CMASSI, CMASS2
- CQDMEM1 - CBAR
- CQUAD4 - CONM2
- CTRIA3 - CELASI, CELAS2
- CTRMEM

639

Entity: SHEAREST

Entity Type: Relation

Description: Contains the element summary data for the shear panel.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

PID Integer > 0 Element property identification number

SILl Integer > 0

SIL2 Integer > 0 Internal grid point id

SIL3 Integer > 0

SIL4 Integer > 0

MID1 Integer > 0 Material id of a MAT1 tuple

THICK Real > 0.0 Element thickness

NSM Real Ž 0.0 Element nonstructural mass
COORD1 Integer>0 External coordinate system id for

Ig displacements at SILl

Xl, Y1, Z1 Real Basic coordinates of SILl

External coordinate system id for
COORD2 Integer Ž 0 displacements at SIL2

X2, Y2, Z2 Real Basic coordinates of SIL2

COORD3 Ž0O External coordinate system id for
3 Integer displacements at SIL3

X3, Y3, Z3 Real Basic coordinates of SIL3
COORD4 Integer>0 External coordinate system id for

Ig displacements at SIIA

X4, Y4, Z4 Real Basic coordinates of SIL4

SCON Integer Stress constrain flag

DESIGN Integer Design flag

Created By: Module MAKEST

Notes:
1. This relation is built from the CSHEAR, associated P-type and the basic grid

point relations. It contains one tuple for each shear panel in the problem.
2. A nonzero SCON flag denotes that the element is affected by a stress con-

straint.
3. A nonzero DESIGN flag denotes that the element is affected by a design vari-

able.

640

. Entity: SKJ

Entity Type: Matrix

Description: Unsteady aerodynamic integration matrix list that translates pressures into
forces and moments.

Matrix Form: Real rectangular matrix with one row for each -rodynamic degree of freedom
and one column for each aerodynamic panel for each M-k pair.

Created By: Module UNSTEADY

Entity: SLPMOD

Entity Type: Matrix

Description: Intermediate matrix in the nuclear blast response calculation to transform elastic
eigenvectors into slopes at aerodynamic panel control points.

Matrix Form: Real rectangular matrix with one row for each aerodynamic panel and one col-
umn for each elastic eigenvector.

Created By: MAPOL

Entity: SMAT

Entity Type: Matrix

Description: Contains the sensitivity of the stress and strain in the elements coordinate sys-
tem to the global displacements.

Matrix Form: A variable-sized double precision matrix having one column for every
stress/strain term in each element that is constrained by a stress/strain con-
straint tuple and one row for every structural degree of freedom. The columns are
stored in the order the constrained elements are processed in EMG.

Created By: Module EMG

Notes:
1. This matrix is not built if no elements' stresses or strains are constrained.
2. SMAT is used by SCEVAL module for constraint evaluation and MAKDFU

for sensitivity evaluation.

0
641

Entity: SMPLOD

Entity Type: Unstructured

Description: Simpil load vector information.

Entity Struacture: Record I contains three integers defining the number of (1)
simple external loads, NEXTLD, (2) gravity loads, NGRAV,
and (3) thermal loads, NTHERM, followed by a list of load
identification numbers for each of the three groups in sorted
order within each group.

The second through NEXTLD + 1 records contain the exter-
nal loads.

Created Ey: Module LODGEN

Entity: SPC

Entity Type: Relation

Description: Contains the definition of the single point constraints and enforced displacements
as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

GRID1 Integer > 0 Grid or scalar point id

CCMPNTSIi Integer >_ 0 Components of GRID1 that are -unstrained
V-

ENFDISP Real The value of the enforced displacement at all
Dacoordinates specified by COMPNTS1

Created By: Module IFP

Notes:
1. This relation is used by the MKUSET module to build the singje-point con-

straint set.

642

, Entity: SPCI

Entity Type: Relation

Description: Contains the definition of the single point constraints as input from the Bulk
Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

COMPNTS Integer > 0 Components to be constrained

GRIDI Integer > 0 Grid point id defining the constrained
I _components

Created By: Module IFP

Notes:
1. This relation is used by the MKI.USET module to build the single-point con-

straint set.
2. This relation will contain one tuple for each grid point specified in each

unique set of COMPNTS; for example,
COMPNTS = 236, grids 5,6, 8 and 9

and
COMPNTS = 134, grids 10, 20

will result in 6 tuples.

Entity: SPCADD

Entity Type: Relation

Description: Contains the definition as input from the Bulk Data file of a single-point con-
straint sets as a union of SPC and/or of SPC1 sets.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer > 0 Set identification number

SPCSETID Integer > 0 Set id ofa SPC or SPC1_tuple

Created By: Module IFP

Notes:
1. This relation is used by the MKUSET module to build the single-point con-

straint set.

643

Entity: SPLINE 1

Entity Type: Relation

Description: Contains the definition of surface splines used for interpolating out-of-plane mo-
tion in aeroelastic analysis.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0, key Element identification number

S Integer > 0 Coordinate system defining the plane of
the spline

CAEROID Integer > 0 Aero element id

BOX1 Integer > 0 First aero box to use the spline

BOX2 Integer > 0 Last aero box to use the spline

GRDSETID Integer > 0 Set id of a SETi tuple defining the
structural grids

FLEX Real Linear attachment flexibility

Created By: Module IFP

Notes:
1. Aerodynamic boxes are numbered 3equentially in chordwise strips.

644

Entity: SPLINE2

Entity Type: Relation

Description: Contains the definition of a beam spline for interpolating panels and bodies for
steady and unsteady aeroelastic analysis.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

MACROID Integer > 0 The identification of the aerodynamic
macroelement to be splined

The identification numbers of the first and
BOX!, BOX2 Integer > 0 last boxes on the macroelement to be

interpolated using this spline

The identification of a SETi entry which
GRDSETID Integer > 0 lists the structural grid points to which the

spline is attached

FLEX Real _> 0.0 Linear attachment flexibility

DTOR Real Ž 0.0 Torsional flexibility

CID Rectangular coordinate system which
DInteger defines the y-axis of the spline

DTHX, DTHY Real Rotational attachment flexibility about the
x-axis and y-axis

Created By: Module IFP

Entity: SPOINT

Entity Type: Relation

Description: Contains the identification numbers of those points to be used as scalar points.
Input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EXTID Integer > 0 External point identification

Created By: Module IFP

645

Entity: STABCF

Entity Type: Relation

Description: Rigid body stability coefficients.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

MACHINDX Int3ger Mach number index of associated AIRFRC

PARM String(8) Character string identifying the configuration
parameter.

SYMFLG Integer Symmetry flag for the parameter.

PAPMdVAL Real Parameter value used to genprate the "unit"
forces.

CL Real Lift coefficient

CD Real Drag coefficient

Cs Real Sideforce coefficiept

CMX Real Rolling moment coeficiont

CMY Real Pitching mom'ent coefficient

CMZ Real Yawing moment coefficient

Cr-3ated By: Modulr- STEADY

Notes:
1. The SYMFLG values are:

= 1 SymmetriL
= -1 Antisymmetric

2. PARM identifies the physical variable whose perturbation generated the rigid
coefficients. There are six accelerations and six tonfigutation parameters
whose names are reserved that have special meaning. Additional PARM vql-
ues come from the set of all AESURF control surfaces defined and the PARM
attribute contains the user supplied label. For a given MINDEX value, the
AIJRFRC matrix has one column (which may contain only zeros) for each en-
try in STABCF in the order of the STABCF relation. The PARM field is then:

PARM VARIADLE

NX Rigid body acceleration in drag/thrust dire-ion (Produces nol
forces, but included for completeness to allow modification of!
AIRFRC columns to include nonzero terms)

NY Rigid body acceleration in side force direction (Produces no forces,
but included for completeness to allow modification of AIRFRC,
columns to include nonzero terms)

646

PARM VARIABLE

NZ Rigid body acceleration in plunge direction (Produces no forces, but
included for completeness to allow modification of AIRFRC columns
to include nonzero terms)

PACCEL Rigid body acceleration about the roll axis. (Produces no forces, but
included for completeness to allow modification ofAIRFRC columns
to include nonzero terms)

QACCEL Rigid body acceleration about the pitch axis. (Produces no forces,
but included for completeness to allow modification of AIRFRC
columns to include nonzero terms)

RACCEL Rigid body acceleration about the yaw axis. (Produces no forces, but
included for completeness to allow modification ofAIRFRC columns
to include nonzero terms)

THKCAM 'Forces arising from the effects of only thickness and camber with
all other configuration parameters set to zero.

ALPHA Forces arising due to unit angle of attack.

BETA Forces arising due to a unit yaw angle.

P•ATE Forces arising due to a unit roll rate.

QRIATE Forces arising due to a unit pitch rate.

RRATE Forces arising due to a unit yaw rate

surface Forces arising due to the unit deflection of the AESURF control
surface named in the PARM field.

647

Entity: SUPORT

Entity Type: Relation

Description: Contains the definition of the set of points, as input from the Bulk Data file, at
which the user desires determinate reactions to be applied to a free body.

Relation Attributes:

NAME 7YPEIKEY DESCRIPTION

SETID Integer > 0 Set identification number

GRID! Integer > 0 Grid or scalar point identification

COMPNTS1 Integer >0 CoIponents of GR1D1

Created By: Module IFP

Notes:
1. This relation will be used by the MKUSET relation to build the support set.

Entity: TABDMP1

Entity Type: Relation

Description: Contains modal structural damping tzbles for use in flutter analysis as input
from the Bulk Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Set identification number

TYPE Text (4) Damping type

FI Real > 0.0 Frequency value

FBCD Text (4) A character attribute to process SKIP requests

GI Real Damping value

GBCD Text (4) A character attribute to process SKIP requests

Created By: Module IFP

648

Entity. TABLEDI

Entity T ype: ,Relation

Description: Contains tabular function data for generating dynamic loads as input from the
Balk Data file.

Relation Adtributes:

NAME TYPE/KEY, DESCRIPTION

TID Integer Table identifi cation number

XI Real Time (or frequency) fir the tuple

YA . Real Response for this tupele

STRXF Text (4) A character attribute to process skip requests
LSTRY1 Text (4) A character attribute to process skip requests

Created By: LFP

Notes:
1. The relation is used in subroutine PRTAB1 to define time or frequency de-

pendent load,

Entity: TEL4

Entity Type: Unstructured

Description: Contains the geometric and material element thermal loads partitions if any ther-
mal loads have been defined in the model.

Entity Stnucture:

Record:
i. Each record contains the geometric and material thermal loads partitions for

each element in the model if any thermal loads have been defined in the
model.

Created By: Module EMG

Notes:
1. This entity contains one record for each partition of each element thermal

loads matrix. Aparititon is that portVon of the matrix connected to one pivot
sil.

2. Refer I. the DVCT relation documentation for further details.
3. The ';"ELY terms are stored in the same precision as the PG matrix.

649

Entity: TEMP

Entity Type: Relation

Description: Contains the grid point temperatures as input from the Bulk Data file.

Relation Attributes:

I-

NAME jTYPEIKEY DESCRIPTION
SETID Integer The set identification number

GRIDi Integer The grid point id

TEMPVAL Real I The value of temperature assigned to GRID1

Created By: Module IFP

Entity: TEIPD

Entity Type: Rplation

Description: Contains the default grid point temperature as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SETID Integer - The set identification
TEMPDVL Rea The default grid point temperature for the set

TEMPDVAJ Real _ _i._SET gr

Created By: Module IF?

650

I Entity: TF

Entity Type: Relation

Description: Contains the definition of transfer functions as input from the Bulk Data file.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SI D Integer Set identification number

GD Integer Grid, scalar or extra point id

CD Integer Component number of grid point GD

BO Real Zeroth order coefficient

B1 Real First order coefficient

B2 Real Second order coefficient

GI Integer Grid, scalar or extra point id

CI Integer Component number of grid point GI

AOI Real Zeroth order coefficient

All Real First order coefficient

A2I lReal i:econd order coefficient

Created By: Module IFP

651

Entity: TFDATA

Entity Type: Unstructured

Description: Contains the collected transfer function data for all transfer function sets defined.

Entity Structure:

Record:
1. Alist of all set identification numbers in sorted order
i. Contains the transfer function for the (i-1)th transfer function set. Each re-

cord has the following form:

WORD VARMABLE DESCRIPTION

1 SID Set identification for the (i-1)th transfer function
set

Internal number of the matrix column affected by
SCOL the transfer function

j+1 NROW Number of terms defined in the column COL

For each term in the column four words are stored:
1) Internal number of the matrix rowj+2 to 2) 0th order coefficient
3) 1st order coefficient

4) 2nd order coefficient
L _in sorted row order

Created By: PFBULK

Notes:
1. This entity is used in DMAto assemble dynamic matrices.
2. The j index runs from 1 to NCOL for each column in the matrix that is af-

fected by the transfer function terms in sorted column order.

652

Entity: TFIXED

Entity Type: Relation

Description: Contains the layer thicknesses of undesigned layers of designed composite ele-
ments.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

Element type. One of the following:
ETYPE Text (8) QDMEM1 QUAD4

TRMEM TRIA3

LAYRNUM Integer > 0 Layer number

T Real > 0.0 Thickness

Created By: MAKEST

Notes:
1. These thicknesses are used in the evalation of thickness constraints and com-

posite laminate constraints.

653

Entity: TIMELIST

Entity Type: Relation

Description: Contains the list of times for which outputs are requested es input from the Bulk
Data file.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SI D . Integer Set identification number

TIME Real Time value in consistent units

Created By: Module IFP

Entity: TLOAD1

Entity Type: Relation

Description: Contains information on time dependent loads as defined on the TLOAD1 bulk
data entry.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SID Integer > 0, key Set identification number

IDEL Integer > 0 ID of the DLAGS set

TABLI Integer ID of the TABLED1 set

Created By: Module IFP
Notes:
1. The relation is used in module OFPLOAD co generate dynamic loads.

654

. Entity: TLOAD2

Entity Type: Relation

Description: Contains information on time dependent loads as defined by the TLOAD2 bulk
data entry.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SID Integer > 0, key Set identification number

IDEL Integer > 0 ID of the DLAGS set

T1 Real Ž 0.0 Time constant

T2 Real > T Time constant

FREQ Real > 0.0 Frequency parameter

PHASE Real Phase parameter

CTEXP Real Exponential coefficient

GROWTH Real Growth coefficient

Created By: Module IFP

Notes:
1. The relation is used in module OFPLOAD to generate dynamic loads.

Entity: TMN

Entity Type: Subscripted Matrix

Description: Contains the rigid constraint matrix relating the displacements at dependent de-
grees of frer dorm to those at the independent degrees of freedom.

Matrix Form: A variable-sized single precision matrix having one row for each dependent de-
gree of freedom and one column for each independent degree of freedom. The
rigid constraint matrix is built from MPC and rigid elements such that:

[Um] = [•] [un]

Created By: Module MK-USET

Notes:
1. The dimension of this subscripted matrix must be large enough for all optimi-

zation and analysis boundary conditions.
2. If no multipoint constraints are defined, this matrix will have no columns.

655

Entity: TMP1

Entity Type: Matrix

Description: A scratch matrix used at various points in the MAPOL sequence for intirmediate
calculation.

Matrix Form: Application dependent.

Created By: MAPOL

Entity: 114P2

Entity Type: Matrix

Description: A scratch matrix used at various points in the MAPOL sequence for intprm, ediate
calculation.

Matrix Form: Application dependent,

Created By: MAPOL

Entity: TREF

Entity Type: Unstructured

Description: Contains the element reference temperature for each element in the model.

Entity Structure:

Record:
1 Contains the reference temperature for each element in the model. The tem-

perawres are stored in the order the elements are processed.

Created By: Module EMG

Notes:
1. Elements are processe&' alphabetically by element type and numerically

within each element type.
2. Entity is only created if TEMP or TEMPD bulk data entries exist.
3. The TREFPT attribpite on the XXXEST relations points to the position in

TREF for the associated reference temperature.

I
6b6

Entity: TRIM

Entity Type: Relation

Description: Contains the definition of a trim parameter constraint.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

SETID Integer > 0 Trim set identification number

MACH Real > 0.0 Mach number

QDP Real > 0.0 Dynamic pressure

TRMTYP Text(8) Type of trim desired

"Identification of CONEFFS bulk data entries
EFFID Integer which modify control surface effectiveness

values

vO Real Velocity

Label defining the aerodynamic trimLABELI 'Text(8) prmtrparameters

FREEI Text(4) Character string FREE

FIXI Real Magnitude of the trim parameter

MACHINDX Integer Mach number index for the current subcase

SUBSCRPT Integer Subscript counter

SUBCASID Integer Subcase identification number

Created By: Module IFP and STEADY

657

Entity: TRIA3EST

Entity: Relation

Dexcription: Contains the element summary data for the triangular TRIA3 element.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

EID Integer > 0 Element identification number

PID Integer > 0 Element property identification number

PTYPE Text (8) Element property type

LAYRNUM Integer Ž 0 Composite layer number

SILl Integer > 0 Internal grid point id 1

SIL2 Integer > 0 Internal grid point id 2

SIL3 Integer >0_ Internal grid point id 3
THICK1 Real > 0.0 Membrane thickness for grid 1

THICK2 Real > 0.0 Membrane thickness for grid 2

THICK3 Real > 0.0 Membrane thickness for grid 3

CIDI Integer >0 Coordinate system defining material axis

THETAM Real Material orientation angle

OFFSTO Real Offset of the element reference plane from the
plane of grid points.

HI D! Integer >0 Material identification number for membrane

THICK Real > 0.0 Membrane thickness

MID2 Integer >0 Material identification number for bending

BENDSTIF Real > 0.0 Bending stiffness parameter

MID3 Integer>0 Material identification number for transverse
shear

TRNSVRS Real > 0.0 Transverse shear thickness factor

NSM Real > 0.0 Nonstructural mass

FZ 1 Real > 0.0 Fiber distance for stress computation

FZ2 Real > 0.0 Fiber distance for stress computation

MID4 Integer >0 Material identification number for membrane-
__bending coupling

cIDs Integer Ž 0 Coordinate system defining stress output
coordinate system

THETAS Real Stress output orientation angle

COORD1 Integer External coord system for SILl 4

658

NAME TYPE/KEY DESCRIPTION

Xl, Y1, Z1 Real Basic coordinates of SIL1
COORD2 Integer >0 External coord system for SIL2

X2, Y2, Z2 Real Basic coordinates of SIL2

COORD3 Integer >0 External coord system for SIL3

X3, Y3, Z3 Real Basic coordinates of SIL3

SCON Integer Stress constraint flag

DESIGN Integer Design flag

Thermal stress terms for the constrained
STHRM Real Array(3) element

STHPMA Real Array(3) Thermal strain terms for the constrained
STHRM______ R r element

TREFPT Integer Ž 0 Pointer to the TREF entity for thermal
1 1loads/stress evaluation of the designed element

Created By: Module MAKEST

Notes: This relation is built from the CTRIA3, associated P-type and the basic grid point
data. It contains one tuple for each isoparametric TRLAX3 element in the problem.

0

659

Entity: TRMEMbEST

Entity Type: Relation

Description: Contains the element summary data for the constant strain triangular mem-
brane element.

Relation Attributes:

NAME TYPEIKEY DESCRIPTION

EI D Integer > 0, key Element identification number

PI D Integer > 0 Element property identification number

PTYPE Text (8) Element property type

LAYRNUM Integer >0 Composite layer number

SILl Integer > 0

SIL2 Integer > 0 Internal grid point id

SIL3 Integer > 0

CI D Integer >0 Coordinate system defining material axis

THETA Real Material orientation angle for anisotropic
material behavior

MID1 Integer > 0 Material id of MAT1 tuple

THICK Real > 0.0 Element thickness
NSM Real > 0.0 Element nonstructural mass

COORDI Integer Ž 0 External coordinate system id for
-displacements at SILl

Xl, Y1, Z1 Real External coordinate system id for
displacements at SIL1

COORD2 Integer >0 External coordinate system id for
displacements at SIL2

X2, Y2, Z2 Real Extci nal coordinate system id for
displacements at SIL2

COORD3 Žr0 External coordinate system id for
displacements at SIL3

X3, Y3, Z3 Real External coordinate system id for
displacements at SIL3

SCON Integer Stress constraint flag

DESIGN Integer Design flag

Thermal stress terms for the constrained
STHRM Real Array (3) element

Thermal strain terms for the constrained
STHRMA Real Array (3) element

660

NAME TYPEIKEY DESCRIPTION

TREFPT Integer > 0 Pointer to TREF entity used to evaluate
ge thermal loads and thermal stresses

Created By: Module MAKEST

Notes:
1. This relation is built from the CTRMEM, associated P-type and the basic grid

point relations. It contains one tuple for each triangular membrane element
in the problem.

2. A nonzero SCON flag denotes that the element is affected by a stress con-
straint.

3. A nonzero DESIGN flag denotes that the element is affected by a design vari-
able.

4. LAYRNUM is zero for noncomposite elements.

0

661

Entity: TSTEP

Entity Type: Relation

Description: Contains time step information for the dynamic response as input from the Bulk
Data file.

Relation Attributes:

NAME TYn /KEY DESCRIPTION

SID Integer > 0 Time step identification number

NDTI Integer >2 Number of time steps for this tuple

DELTAi Real > 0.0 Time increment for this tuple

NOUTI Integer Skip fact or this tuple

Created By: Module IFP

Notes:
1. The response at every NOUTIth time step will be saved for output.

Entity: UA

Entity Type: Matrix

Description: Displacements in the a-set.

Matrix Form: A variable-size matrix having one row for each degree of freedom in the analysis
set and one column for each load condition in the current boundary condition.

Created By: See Notes.

Notes:
1. This matrix is calculated using:

if there is inertia relief,

[trA] = (M112 I [AR] + [PAR I [=LTA]

for static aeroelasticity, and

for static analysis without inertia relief.
2. See UG.

662

Entity: UBLASTG

Entity Type: Matrix

Description: Blast response quantities in the g-set

Matrix Form: Real rectangular matrix with one row for each g-set degree of freedom and three
columns (corresponding to &-ýplacement, velocity, and acceleration) for each time
step at which transient calculations are retained.

Created By: MAPOL

Entity: UBLASTI

Entity Type: Matrix

Description: Blast response quantities in the i-set.

Matrix Form: Real rectangular matrix with one row for each retained mode and three columns
(corresponding to displacement, velocity, and acceleration) for each time step at
which transient calculations are retained.

Created By: BLASZTDRV

Entity: UDLOLY

Entity Type: Unstructured

Description: Contains collected DLONLY information.

Record:
1. ID's of the NDIS DLONLY sats in sorted order. Contains data for the (i-10th

DLONLY set. The information on each of these records is:

SWORD NO VARMABLE DESCRIPTION

j LOAD Load factor

K j+1. ISIL Internal ID of load component

Created By: Module PFBLLK

Notes:
1. The number of words for the ith record is twice the number of load factors in-

put for the associated set ID.

Entaty: UF

Entity 'ype: Matrix

Description: Displacements in• the f-set deri ved from UO and UA (see UG).

663

Entity: U.--MQA

Entity 7ype: Matrix

Description: Matrix of frequency response quantities in the a-set.

Matrix Form: A complex rectangular matrix with one row for each a-set degree of freedom atnd
thrce columns (corresponding to displacement, velocity, and acceleration) for each
frequen~cy at which frequency response output is required.

Created By: Module DYNRSP or MAPOL

Notes:
1. If the direct method of frequency response is used, IJFREQ is computed in

module DYN'RSP. If the modal method is used, UFREQA is recovered using
UFREQI and P11H.

Entity: UMRQE

Entity Type: Matrix

Description: Matrix of frequency response quantities in the e-set.

Matrix Form: A complex rectangular matrix with orne row for each e-set degree of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
frequency at which frequency response output is required.

Created By: Module DYNRSP

Notes:
1. UFREQE is only computed in a frequency response analvqis thati includes ex-

tra points.

Entity: UF.REQF

Eintity T-pe: Matrix

Description: Matrix of frequency response quantities in the f-set.
Matrix Form: A comjpie7 rectangular matrix with one row for each f-set degree of freedom and

three columns (corresp.rndirng to displace-ment, velocity, and acceleration) for each
frequency at which frequency response output is required.

Created By: MAPOL

Entity: UFHEQG

Entity Type: Matrix

Description: Matrix of frequency response quantities in the g-set.

Matrix Form: A complex rectangular matrix with one row for each g-set degrea of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
frequency at which frequercy response output is required.

Created By: MAPOL

66

J66

Entity: UFREQI

Entity Type: Matrix

Description: Matrix of frequency response quantities in the i-set.

Matrix Form: A complex rectangular matrix with one row for each i-set degree of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
frequency at which frequency response output is required.

Created By: Module DYNRSP

Notes:
1. This matrix is only computed when the modal method of frequency response

is invoked.

Entity: UFREQN

Entity Type: Matrix

Description: Matrix of frequency response quantities in the n-set.

Matrix Form: A complex rectangular matrix with one row for each n-set degree of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
frequency at which frequency response output is required.

Created By: MAPOL

Entity: UG

Entity Type: Subscripted Matrix

Description: Displacements of the stru-tuw-al degrees of freedom in the g-set.

Matrix Form: A variable-sized matrix having one row for each structural degree of freedom and
one column for each load condition in the boundary ondition.

Created By: MAPOL

Notes:
1. The MAPOL sequence recovers this matrix in the following order (see the

Theoretical Manual for the explicit form xf this recovery):

UA

[x]-* uGI

665

Entity: UGA

Entity Type: Matrix

Description: "Active" displacements vectors for the current boundary condition.

Matrix Form: The matrix has one column for each active displacement vector and GSIZE rows.

Created By: MAPOL

Notes:
1. This matrix is obtained by partitioning UG using the PGA partitioning vector.

Entity: UGTKAB

Entity Type: Matrix

Description: A partition of the UGTKF matrix (see UGTKG).

Entity: UGTKA

Entity Type: Matrix

Description: Unsteady spline matrix in the a-set derived from UGTKF (see UGTKG).

Entity: UGTKF

Entity Type: Matrix

Description: Unsteady spline matrix in the f-set derived from UGTKN (see UGTKG).

Entity: UGTKG

Entity Type: Matrix

Description: Matrix containing the spline relations which relate the structural and unsteady
aerodynamics models

Matrix Form: Real rectangular matrix with one row for each g-set degree of freedom and one
column for each aerodynamic degree of freedom.

Created By: Module SPLINEU

Notes:
1. The MAPOL sequence supports the following partitions of the UGTKG ma-

trix (see the Theoretical Manual for the exact formation of these matricies):

TJGTKG --- [9~

t7GTKG -4 [UG=

UGT1XG -4 [UGT]

=UGT [tGTKAB] + [GSU o]T [tGTKO

666

. Entity: UGTKN

Entity Type: Matrix

Description: Unsteady spline matrix in the n-set derived from UGTKG (see UGTKG).

Entity: UGTKO

Entity TJype: Matrix

Description: Unsteady spline matrix in the o-set obtained as a partition of UGTKF (see
UGTKG).

Entity: UKQ

Entity Type: Matrix

Description: Upper triangular portion of the decomposed KEQE matrix.

Matrix Form: Square real matrix having one row and column for each elastic mode retained in
the nuclear blast response analysis.

Created by: DECOMP

Notes:
1. KEQE is not symmetric.
2. This matrix is formed for use by the GFBS large matrix utility.

. Entity: UM

Entity Type: Matrix

Description: Displacements in the m-set derived from UN and TMN (see UG).

Entity: UN

Entity Type: Matrix

Description: Displacements in the n-set derived from UF and YS (see UG).

0

667

Entity: UNMK

Entity Type: Unstructured

Description: Contains a global list of Mach number and reduced frequency pairs for which
aerodynamic matrices were generated in the aerodynamic matrix lists.

Entity Structure:

RECORD WORDS DESCRIPTION

A one-word entry for each combination of
I 1-6 symmetry options in the order noted containing

the number of m-k pairs having the particular1Esymmetry option
Contains one four word entry for each aerodynamic

7~6+4*nmk matrix selected for generation by the MKAEROi
entries of the following form:M, K. SYY, SYWM
Contains the number of j degrees of freedom and

2 !-2*BGRP I the number of k degrees of freedom for each

L......__., unsteady aerodynamic Znou.

Created By: Module UNSTEADY

Notes:
1. Record I is sorted first by Mach number (M) and then by reduced frequency

(k) within each M value for each combination of symmetry values. The sym-
metry options are treated in the following order:

ORDER SYMXZ SYMXY
1 -1 -1
2 -1 0
3 0 -1
4 0 0
5 1 -1
6 1 0

Entity: UO

Entity Type: Matuix

Description: Sensitivities of displacements in the o-set.

Matrix Form: A real rectangular matrix with one row for each o-set degree of freedom and one
column for each active subcase times the number of design variables.

Created By: MAJ=OL

Notes:
1. For static aeroelastic analysis, UO is computed from:

WO [] = [GAS0o] * [T•V] +[UOO]

2. For inertia relief, UO is computed from:

[UO] = [GSUBO I * [DAV] + [1UOOi

668

Entity: UOO

Entity Type: Matrix

Description: Intermediate displacement sen-iti'rities of the o-set.

Matrix Form: A real rectangular matrix %ith one row for each o-set degree of freedom and one
column for each active subcase times the number of design variables.

Created By: GFBS

Notes:
1. UO0 is computed from:

[] r I [ov + POARO * DZEZD]

2. For inertia relief, UOO is computed from:

[P~O [~3OI IDPOV + nX * D=A

Entity: URDB

Entity Type: Matrix

Description: Vector of aircraft rigid body accclerations that are computed for aircraft trim
prior to the nuclear blast response calculation.

Matrix Form: Real rectangular matix having two rows (vertical and angular acceleration) and
one column.

O Created By: BLASTRIM

0
669

Entity: USET

Entity Type: Unstructured

Description: Contains the bit masks defining the structural sets to which the degrees of free-
dom belong.

Entity Structure:

Record:
i Each record contains the boundary condition id as the first word followed by

one word for each dependent set containing the number of DOF in each de-
pendent set. These are followed by one word for each degree of freedom con-
taining the bit masks defining the structural sets to which they belong.

Created By: Module ?,IKUSET

Notes:
1. This entity contains one record for each boundary condition in the problem.
2. The bit masks are used to generate matiix partitioning vectors.
3. The 11th word of the INFO array for this entity contains the number of de-

grees of freedom in the structural model (g- set size).
4. The USET header has the following form:

WORD DESCRIPTION
1 Boundary condition id
2 Number of m-set dofs
3 Number of s-set dofs
4 Number of o-set dofs
5 Number of r-set dofs i

Entity: UT1RANA

Entity Type: Matrix

Description: Matrix of transient response quantities in the a-set.

Matrix Form: Complex rectangular matrix with one row for each a-set degree of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
time step at which transient response output is required.

Created By: Module DYNRSP or MAPOL

Notes:
1. If the direct method of transient response is used, UTRANA is computed in

modute DYNRSP If the modal method is used, UTRANAis recovered using
UTRANI and PHIA.

Entity: UTRANE

Entity Type: Matrix

Description: Matrix of frequency response quantities in the e-set.
Matrix Form: Complex rectangular matrix with one row for each e-set degree of freedorn and

three columns (corresponding to displacement, velocity, and acceleration) for each
time step at which transient response output is required.

Created By: Module DYNRSP

670

,Entity: UTRANF

Entity Type: Matrix

Description: Matrix of frequency response quantities in the f-set.

Matrix Form: Complex rectangular matrix with one row for each f-set degree of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
time step at which transient response output is required.

Created By: MAPOL

Entity: UTRANG

Entity Type: Matrix

Description: Matrix of frequency response quantities in the g-set.

Matrix Form: Complex rectangular matrix with one row for each g-set degree of freedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
frequency at which frequency response output is required.

Created By: MAPOL

Entity: UTRANI

Entity Type: Matrix

Description: Matrix of frequency response quantities in the i-set.

Matrix Form: Complex rectangular matrix with one row for each i-set degree of fi-eedom and
three columns (corresponding to displacement, velocity, and acceleration) for each
time ztep at which transient response output is required.

Created By: Module DYNRSP

Notes:
1. This matrix is only computed when the modal method of transient response

analysis is invoked.

Entity: UTRANN

Entity Type: Matrix

Description: Matrix of frequency response quantities in the n-set.

Matrix Form: Complex rectangular matrix with one row for each n-set degree of freedom and
three columnis (corresponding to displacement, velocity, and acceleration) for each
time step at which transient response output is required.

Created By: MAPOL

671

Entity: VSDAMP

Entity Type: Relation

Description: Contains the specification of parameters used to generate viscous damping terms
in the dynamic matrices.

Relation Attributes:

NAME TYPE/KEY DESCRIPTION

SI D Integer Set identification number

GVAIL Real Damping value

OMEGA3 Real Cyclic frequency

Created By: Module IFP

Notes:
1. If both GVAL and OMEGA3 are nonzero, equivalent structural damping is

used to generate the BDD and/or BHH entities.
2. If only GVAL is nonzero, structural damping is used for direct or modal fre-

quency or flutter analyses.

Entity: YS

Entity Type: Subscripted Matrix

Description: Contains the column vector of enforced displacements of degrees of freedom con- -
strained by singlez point constraints (see UG).

Matrix Form: A variable-sized single precision column vector having one row for each single
point constraint degree of freedom.

Created By: Module MKUSET

Notes:
1. If no nonzero enforced displacements are specified for SPC'd degrees of free-

dom, this matrix will have no columns.

I
672

10. APPLICATION PROGRAMMER NOTES

One of the strengths of the ASTROS architecture is the ease with which the system can be
modified and enhanced. Therefore, many ASTROS users will find it convenient and useful to write
software to perform special purpose tasks within the ASTROS environment rather than in the more
typical post-processing style. That is, instead of writing the ASTROS results to an intermediate medium
to be read by the special routine, the new feature will be installed into the ASTROS system. The intent of
this section is to give this type of ASTROS programmer an overview to wviting modules that interface
with the ASTROS system.

Coding standards and software design guidelines are given to create a module that functions
within the ASTROS architecture without creating integration problems. Also, informal guidelines to
using the ASTROS Dynamic Memory Manager (DMM) and the applications interface to the Computer
Automated Design Database (CADDB) are presented. These presentations are necessarily limited in
scope and do not provide a comprehensive guide to every aspect of ASTROS programming. They should,O however, be sufficient for the advanced ASTROS user to write ;nodules to perform special tasks without
(1) duplicating functions that already exist in the ASTROS software and (2) writing code that causes
errors outside the module being written. This section is divided into four subsections. Subsection 10.1
discusses coding standards including programming language and modular design. Subsection 10.2 con-
tains suggestions for how to make the best use of the DMM, while subsection 10.3 is concerned with the
CADDB features. Finally, Subsection 10.4 combines these topics and gives gnidelines for I/O and system
level interfaces within the ASTROS architecture.

673

10.1. SOFTWARE STANDARDS0

ASTROS was designed to be machine transportable, maintainable, and easy to enhance. To
achieve these goals, a set of software standards was defined both to design the modules and to guide the
codification of the resulting algorithms. While these concepts were required for all ASTROS development
efforts, they are not required for the develeper of a new ASTROS module that is outside the scope of the
officisl code. Many of these concepts, however, provide useful guidelines for all code developrrent and
avoid several potential pitfalls.

The most crucial concept is that of modularity. From the programmer's point of view, this means
that the mechanisms by which the module communicates with other modules and with the executive are
limited to maximize the independence of each module. For example, the interdependence of modules is
reduced by communicating with data structures (e.g., relations, matrices, and unstructured entities) that
reside on the database rather than in memory. Further independence is achieved by using dummy
arguments to communicate between program units within a module and by avoiding the use of pathologi-
cal communications such as common blocks. This mechanism of internal communication is well suited to
the D1MLM for reasons of both modularity and simplicity. Tihe DMM also eases the programmer's task in
ensuring modularity by preventing the passage between modules of those data stored in open core blocks.
The programmer is also given some additional debugging tools to ensure that the modularity has been
maintained.

Modularity and maintainability may be further enhanced by recognizing that there are several
distinct groups of code in ASTROS. These are the system level mod-les, the engineering application

modules, the application utility modules, the large matrix utility modules, and the database/memory
manager utility modules. All these modules comprising the current system are documented in Sections 3
through 8. Most important from the application programmer's point of view are the utility moclules. The
programmer should become familiar with the utility modules so that optimal use can be made of the
existing ASTROS software. By using the existing utilities whenever possible, needless duplication of -ode
is avoided and the maintainability is enhanced. Also, the ability to read the code is improved since the
limited number of utilities are easily recognized by another programmer and no time need be spent in
determining the function of a duplicate code block.

Machine transportability was a major consideration in the development of the ASTROS system.
This requirement is not as critical for the application programmer who wants to install a special purpose
module into the ASTROS system. It may be useful, however, to follow some basic guidelines, if for no
other reason than the module's off-site utility. The basic guideline to follow is that all code be developed
using the FORTRAN language adhering to the ANSI X3.9-1978 standard. This assures proper compila-
tion and execution over a wide variety of computers and operating systems. Common nonstandard
features such as certain file operations, FORTRAN enhancements and the use of site specific utility
libraries should be avoided to maintain the transportability of the resultant system. It may be the case
that the enhanced or site specific features are required in the new module. If so, the transportability of
the system cannot be maintained: the programmer should give serious consideration to the ramifications
of this loss before committing to a nonstandard piece of code.

In the author's experience, the most common problems with machine dependencies (aside from
those already isolated) come from code developed using nonstandard FORTRAN enhancements. Often,

674

the resident FORTRAN compiler does not identify extensions to the standard and inexperienced program-
mers do not recognize that their code is nonstandard. A brief list of enhancements that are frequently
seen and that should be avoided is:

1. The use of hollerith data outside DATA statements and FORMAT statements.

2. Special OPEN and CLOSE parameters and other file operations. Unless absolutely necessary,
1/0 should be limited to the database and the standard output file or punch file.

3. DO-WHILE and DO-UNTIL looping constructs - these can and should be emulated using
standard FORTRAN.

4. Nonstandard variable names: in excess of 6 characters in length nr containing nonstandard
characters.

5. CHARACTER and non-CHARACTER data within a single named COMMON block - many
compilers allow this without warning but it is nonstandard and can cause problems.

6. Very large or very small constants often create problems in that the range of legal real numbers
is highly machine dependent.

7. Nonstandard type declarations: common examples are DOUBLE PRECISION COMPLEX,
REAL*16, and INTEGER*1.

0
675

10.2. OPEN CORE CONCEPTS - DMM

ASTROS has a powerful and flexible Dynamic Memory Manager (DMM) which allows the pro-
grammer to allocate blocks of memory of a variable size determined at execution time. Various groups of
memory, each containing one or more blocks, may be allocated and assigned names. The DMM then
returns pointers to the various blocks relative to a single named common block unique to each raiodule
All but the smallest local arrays used within a subroutine should use the DMM. There are three major
reasons for this: (1) it eliminates the need to make a priori judgements about the size of arrays to
allocate, thus eliminating or reducing the problem size restrictions (2) the DMM can automatically take
into account the precision of the data and (3) the resultant code is more likely to be modular since the
DMM promotes the modular use of memory resources. These important application utilities are docu-
mented in Section 8.3.

Memory can be allocated or released at any point in the code, allowing the programmer to make
optimal use of system resources. Typically, however, memory requests are made in high level routines
within a module, and the resultant memory block addresses are passed to the subroutines which make
use of them. In this manner, the lower level routines may be coded in an open-ended, modular fashion
with no need to keep track of memorn block pointers. This approach is ideal when incorporating other
codes (which do not make use of dynamic memory management) into the ASTROS system. In these cases,
a top level driver routine for the new module may isolate all requests to allocate and subsequently free
memory used within the module. By passing the starting address of the memory block to the lower level
routines, the original array variables may often be preserved (thus avoiding extensive recoding) and any
fixed dimensions for this array are removed. An equally effective technique is to pass the base core
address (the address passed to the MMBASE utility) to the lower level routines. This method has the 0
added benefit of eliminating the open core COMMON block from the lnwer level routines.

676

W 10.3. CADDB APPLICATION INTERFACE

CADDB is the basis of the majority of 110 activit) within ASTPOS. All of the input data,
transitional results and answers are placed into entities on this d.taba,.Z. Mdules and subroutines are
free to draw from the existing entities and to create new entities, both fui ar:v'L purposes and to use as
scratch space during execution. The CADDB applications interface hat been dcK,Sned to interact effec-
tively with the DMM. For example, all entities include descriptions of the a--ot',t of data which they
contain so that the proper memory block request can be made -rior to retriew,- the data. Techniques
found in older systems, such as in NASTRAN, in which all available memory - alt~cztk.d prior to entering
the module, should not be used, although they may be emulated using the ASTROS D&,•

When incorporating other codes into the ASTROS system, it is desirable to c••form to. the
ASTROS requirement that all input come from the input data stream and subsequently be aviilable on
the database. Although user input to a module can come from the MAPOL sequence or any extorral file,
roore typically, input will come from bulk data entries which are loaded at run time into ezorreiiponding
database relational entities. The use of external files should be minimized because of the strongl,
machine dependent nature of the 1/0 interface and potential conflicts with the existing 1/0 hlteifaz-
Te FO1TrRAN READ statements should not appear in any of the new modules. Instead, a suitable &C-sz
of database entities should be designed such that existing READ statements can be replaced with querie,
to the database. As with the calls to the memory manager, described in Section 8.3, a common practice is
to group the database calls in a high level or driver routine in a module and then pass the retrieved data
to the lower level routines through parameter lists. This helps to keep the engineering routines free of the

* otherwise extraneous clutter which can result from a series of memory manager and database requests.
This method is most effective when installing existing code as an ASTROS module.

Three types of data base entities ýrsiational, matrix, and onstructured) are used in ASTROS.
Entities deriv ed from the bulk data will typically be relational or matrix, while entities which are written
in an engineering module can be of any type. Regardless of the type of entity, it must be opened with the
DBOPEN database utility rottine before any W'0 operations are performed, and, when no more YO will be
done on the entity in the current module, it must be closed with the DBCLOS routine. Each entity type
bas its own auite of database management utilities, and these are documented in Section 8. The CADDB
application programrsning intefface is fairly complex and consists of a large number of individual utilities
which may prove daunting to the novice ASTROS programmer - this is especiailly true of th'e matrix
entity access methode. Section 8 is full of simple examples, however, which indicate the range of capabil-
ity of the CADDB interface. The reader is strongly encouraged to study Section 8 and to write some
simple routines to practice the interface. The experienced ASTROS programmer will find that the
CADDB interface greatly simplifies the task of writing almost any piece of ASTROS software.

677

10.4. CODING PRACTICE - THE ASTROS INTERFACE

The architecture of the ASTROS system lends itself to enhancinments. Nevertheless, the addition
of new cde is not a trivial task, and is further complicated by the flexibility of the MAPOL ianguage to
handle optional arguments, functions and subroutines, procedures and looping instructions, all of which
play an important role in designing the module interfrce. The programmer is left with the difficult task of
deciding how best to accomplish the interface in an environment so flexible that no clues are given at to
how best to proceed. All that can be suggested is that exist~ng modules be used as examples and that
experience will shed light on the best methods to access modules.

Typically addition of new,, code is acccmplished by adding a MAPOL callable module. This will be
accompanied by the modifization of several of the SYSGEN input files used for generating the ASTROS
System database. These fles are tI) the module definition file (MODDEF), (2) the relational schema file
(RELATION), (3) the module control sequence (MAPOL), (4) the bulk data template file (TEMPLATE),
and (5) the error message file (SERU.MSG). The capitalized, parenthetical words represent typical root
names of these files for ease of reference. The format for each of these. files is specified in Section 3.2. The
motivation behind each modification is describel in the following notes:

MODDEF must be modified to define the new module to the system so that it may be called from
the MAPOL sequence. If the module performs a frinction that may be generically applied to more
than one database entity of the same type and form, it may then be desirable to include, with the
module deninition, calling argument definitions tu pass in the namnes of the entities to be used.

RELATION must be updated to define the relational schemata of all the new relational database
entities -n the module, including those associated with new bulk data entries. Relational sche-
mata can be defined instead through application calls to CADDB within the new module: how-
evei, this is cumbersome and may lead to problems when the module is executed more than once
or not at all. Therefore, all relations should be defined thmough the SYSGEN RELATION file and
all interniodular entitiea should be created by the executive (through ,, MAPOL declaration).

MAPOL must be changed if the new module Is to be a part of the standard module control se-
quence. Otherwise, it will be necessary to include a new MAPOL sequence or an EDIT of the
standard sequence in the input data file of every ASTROS job which will use the new module. In
either case, the names and types of all new (and old) database entities which will be opened dur-
ing a run must be declared in the MAPOL sequence which is used. However, a programmer
should not modify the standard sequence unless he/she is very familiar with the ASTROS sys-
tem. The MAPOL EDIT feature p'.o, ,s the necessary capabilities and avoids possible corrup-
tion of the standard sequence.

TFMPLATE must be revised to define new bulk data entries if the module requires any input
da~a that cannot be supplied by the current bulk data entries and/or other engineering modules.
Ev ery teauplate definition must have a corresponding entity definition to which the data are

ERRMSG ma~t be updatf d to include any new error message texts that are to be accessed
through the ert ,r message output utility, UT•WRT, documented in Section 6. Unless the module
is to be mace a permanent part of the ASTROS systein, it may be preferable to write informa-

678

tional and error messages directly to the output file. As mentioned in the following, the unit num-

ber of the output file can be found hi the /UNITS' common block.

If communication is desired between subroutines within the new module, it is suggested that

comrmon blocks be avoided, especially common blocks containing fixed length arrays vhich place hard

coded ;rmits on problem size. Use of common blocks tends to obscure a module's structu-e and to reduce
readab-lity and maintainability. Instead, variables and arrays should be passed through the subroutines'
calling lists. In cases where an older code has made prolific use of memory pointers (as in COSMIC/NAS-
TRAN), there may be so many pointers to be passed that it is more convenient to place them within a
common block than to pass them through argument lists. This approach can be justified by the fact that
these pointers are set once in an upper levw routine in the module and then never modified. If new

common block3 are introduced, care must be taken to ensure that unique common block names are used.

For communication between mrdules, the database must be used. Common blocks must never be
used for intermodular communication except for certain system level common blocks. The exception to the
prohibit ion of common blocks is for common blocks which contain system parameters, such as FORTRAN
I/0 unit number:, and mathematical constants, such as n. These quantities are so pervasive that requir-
ing thaL they be passed through argument lists could be unduly burdensome. The following system level
common blocks are used throughout ASTROS:

COMMON/CONDAS/ PI, TWOPI, PADEG, DEGRA
1 FORPI2
COMMON/CONAD/ DPI, DTWOPI, DRADEG, DDEGRA,
"1 D4PISQ

COMMON/UNITS/ IUNIT (15)
COM0MON/OUTPT1/ NLPP, MAXLIN, PAGENO, LINE,
1 TOTLIN
COMMON/OUTPT2/ TITLE, SUBTIT, LABEL, HEAD1

HEAD2, HEAD3

/CONDAS/ and /CONDADi are set in block data routine ASTRBD and contain single and double
precision versions, respectively, of trigonometric quantities. These are nt, 2 n, the multiplier from radians

to degrees, the multiplier from degrees to radians, and 4 n2. /UNITS/, IOUTPTI1, and /OU'TPT2/ are set
and doc-,aner.ted in block data routine),MD. /UNITS/ contains the FORTRAN file unit numbers for
ASTROS 1/0. IUNIT(I) is the ASTROS input file and IUNIT(2) is the ASTROS output file. /OUTPTIJ
and /OUTIPT'I contain quantities used to control the formatting of data output. These two common blocks
should be included in any utility module which uses thc UTPAGE application utility module (documented
in Section 6). NLPP rvpresents the number of lines per page, MAXLIN is the maximum number of output
lines allowed p r ASTROS run, PAGENO is the current page number, LINE i,* the current line number,
TOTLIN is the fotal number of lines output so far, and TITLE, SUBTIT, LAB L, HEADi1, 1IEAD2, and
HEAýD'; are the tije, si.abtitle, lable, and headers which will be output in li.at order at the top of each
page. Of these, LINE, H[AD1, HEAD2, and HEAD3 are the only variables that should be assigned by a
routine which utilizes UT",?AGE.

679
IJ S. GOVERNMENI PRPNTING (4F ICE P)0-11lV

